Suppr超能文献

蛋白质灵活性的分层多分辨率表示

Hierarchical and multi-resolution representation of protein flexibility.

作者信息

Zhao Yong, Stoffler Daniel, Sanner Michel

机构信息

Department of Molecular Biology, TPC26, The Scripps Research Institute La Jolla, CA, USA.

出版信息

Bioinformatics. 2006 Nov 15;22(22):2768-74. doi: 10.1093/bioinformatics/btl481. Epub 2006 Sep 18.

Abstract

MOTIVATION

Conformational rearrangements during molecular interactions are observed in a wide range of biological systems. However, computational methods that aim at simulating and predicting molecular interactions are still largely ignoring the flexible nature of biological macromolecules as the number of degrees of freedom is computationally intractable when using brute force representations.

RESULTS

In this article, we present a computational data structure called the Flexibility Tree (FT) that enables a multi-resolution and hierarchical encoding of molecular flexibility. This tree-like data structure allows the encoding of relatively small, yet complex sub-spaces of a protein's conformational space. These conformational sub-spaces are parameterized by a small number of variables and can be searched efficiently using standard global search techniques. The FT structure makes it straightforward to combine and nest a wide variety of motion types such as hinge, shear, twist, screw, rotameric side chains, normal modes and essential dynamics. Moreover, the ability to assign shapes to the nodes in a FT allows the interactive manipulation of flexible protein shapes and the interactive visualization of the impact of conformational changes on the protein's overall shape. We describe the design of the FT and illustrate the construction of such trees to hierarchically combine motion information obtained from a variety of sources ranging from experiment to user intuition, and describing conformational changes at different biological scales. We show that the combination of various types of motion helps refine the encoded conformational sub-spaces to include experimentally determined structures, and we demonstrate searching these sub-spaces for specific conformations.

摘要

动机

在广泛的生物系统中都观察到了分子相互作用过程中的构象重排。然而,旨在模拟和预测分子相互作用的计算方法在很大程度上仍忽略了生物大分子的柔性本质,因为在使用蛮力表示时,自由度的数量在计算上难以处理。

结果

在本文中,我们提出了一种称为柔性树(FT)的计算数据结构,它能够对分子柔性进行多分辨率和分层编码。这种树状数据结构允许对蛋白质构象空间中相对较小但复杂的子空间进行编码。这些构象子空间由少量变量参数化,并且可以使用标准的全局搜索技术进行高效搜索。FT结构使得能够直接组合和嵌套多种运动类型,如铰链运动、剪切运动、扭转运动、螺旋运动、旋转异构体侧链、正常模式和基本动力学。此外,为FT中的节点分配形状的能力允许对柔性蛋白质形状进行交互式操作,并对构象变化对蛋白质整体形状的影响进行交互式可视化。我们描述了FT的设计,并说明了构建此类树以分层组合从实验到用户直觉等各种来源获得的运动信息,以及描述不同生物尺度下的构象变化。我们表明,各种类型运动的组合有助于细化编码的构象子空间以纳入实验确定的结构,并且我们展示了在这些子空间中搜索特定构象的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验