Suppr超能文献

一种用于检测果蝇中模式化基因表达及后续功能分析的高效启动子陷阱。

An efficient promoter trap for detection of patterned gene expression and subsequent functional analysis in Drosophila.

作者信息

Larsen Camilla, Franch-Marro Xavier, Hartenstein Volker, Alexandre Cyrille, Vincent Jean-Paul

机构信息

University of California, Life Sciences Building 4214, Los Angeles, CA 90025, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17813-7. doi: 10.1073/pnas.0607652103. Epub 2006 Nov 8.

Abstract

Transposable elements have been used in Drosophila to detect gene expression, inactivate gene function, and induce ectopic expression or overexpression. We have combined all of these features in a single construct. A promoterless GAL4 cDNA is expressed when the construct inserts within a transcriptional unit, and GAL4 activates a GFP-encoding gene present in the same transposon. In a primary screen, patterned gene expression is detected as GFP fluorescence in the live progeny of dysgenic males. Many animals expressing GFP in distinct patterns can be recovered with relatively little effort. As expected, many insertions cause loss of function. After insertion at a genomic location, specific parts of the transposon can be excised by FLP recombinase, thus allowing it to induce conditional misexpression of the tagged gene. Therefore, both gain- and loss-of-function studies can be carried out with a single insertion in a gene identified by virtue of its expression pattern. Using this promoter trap approach, we have identified a group of cells that innervate the calyx of the mushroom body and could thus define a previously unrecognized memory circuit.

摘要

转座元件已被用于果蝇中以检测基因表达、使基因功能失活,并诱导异位表达或过表达。我们已将所有这些特性整合到一个单一构建体中。当该构建体插入转录单元内时,无启动子的GAL4 cDNA会表达,并且GAL4会激活存在于同一转座子中的编码GFP的基因。在初次筛选中,在不育雄性的活体后代中,可将有模式的基因表达检测为GFP荧光。只需相对较少的努力就能获得许多以不同模式表达GFP的动物。正如预期的那样,许多插入会导致功能丧失。在基因组位置插入后,转座子的特定部分可被FLP重组酶切除,从而使其能够诱导标记基因的条件性错误表达。因此,通过在根据其表达模式鉴定出的基因中的单次插入,就可以进行功能获得和功能丧失研究。使用这种启动子陷阱方法,我们鉴定出了一组支配蘑菇体萼的细胞,因此可能定义了一个以前未被识别的记忆回路。

相似文献

1
An efficient promoter trap for detection of patterned gene expression and subsequent functional analysis in Drosophila.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17813-7. doi: 10.1073/pnas.0607652103. Epub 2006 Nov 8.
3
Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi.
G3 (Bethesda). 2012 Nov;2(11):1305-15. doi: 10.1534/g3.112.003582. Epub 2012 Nov 1.
4
Controlled expression of Drosophila homeobox loci using the Hostile takeover system.
Dev Dyn. 2015 Jun;244(6):808-25. doi: 10.1002/dvdy.24279.
5
Targeted gain-of-function screening in Drosophila using GAL4-UAS and random transposon insertions.
Genet Res (Camb). 2009 Aug;91(4):243-58. doi: 10.1017/S0016672309990152.
8
GFP-tagged balancer chromosomes for Drosophila melanogaster.
Mech Dev. 1999 Nov;88(2):229-32. doi: 10.1016/s0925-4773(99)00174-4.
9
Inducible protein traps with dominant phenotypes for functional analysis of the Drosophila genome.
Genetics. 2014 Jan;196(1):91-105. doi: 10.1534/genetics.113.157529. Epub 2013 Oct 30.

引用本文的文献

2
Venus trap in the mouse embryo reveals distinct molecular dynamics underlying specification of first embryonic lineages.
EMBO Rep. 2015 Aug;16(8):1005-21. doi: 10.15252/embr.201540162. Epub 2015 Jul 3.
3
A central neural pathway controlling odor tracking in Drosophila.
J Neurosci. 2015 Feb 4;35(5):1831-48. doi: 10.1523/JNEUROSCI.2331-14.2015.
4
Versatile genetic paintbrushes: Brainbow technologies.
Wiley Interdiscip Rev Dev Biol. 2015 Mar-Apr;4(2):161-80. doi: 10.1002/wdev.166. Epub 2014 Dec 9.
6
Dual role of myosin II during Drosophila imaginal disc metamorphosis.
Nat Commun. 2013;4:1761. doi: 10.1038/ncomms2763.
7
Neuronal fiber tracts connecting the brain and ventral nerve cord of the early Drosophila larva.
J Comp Neurol. 2009 Aug 1;515(4):427-40. doi: 10.1002/cne.22086.
8
Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons.
PLoS Biol. 2008 Mar 11;6(3):e58. doi: 10.1371/journal.pbio.0060058.

本文引用的文献

2
Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila.
Sci STKE. 2004 Feb 12;2004(220):pl6. doi: 10.1126/stke.2202004pl6.
3
Segment boundary formation in Drosophila embryos.
Development. 2003 Dec;130(23):5625-35. doi: 10.1242/dev.00867. Epub 2003 Oct 1.
5
Targeted mutagenesis by homologous recombination in D. melanogaster.
Genes Dev. 2002 Jun 15;16(12):1568-81. doi: 10.1101/gad.986602.
6
The art and design of genetic screens: caenorhabditis elegans.
Nat Rev Genet. 2002 May;3(5):356-69. doi: 10.1038/nrg794.
7
A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila.
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15050-5. doi: 10.1073/pnas.261408198. Epub 2001 Dec 11.
8
Dual-tagging gene trap of novel genes in Drosophila melanogaster.
Genetics. 2001 Feb;157(2):727-42. doi: 10.1093/genetics/157.2.727.
9
Heritable gene silencing in Drosophila using double-stranded RNA.
Nat Biotechnol. 2000 Aug;18(8):896-8. doi: 10.1038/78531.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验