Suppr超能文献

RNA聚合酶的流产起始和有效起始都涉及DNA压缩。

Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching.

作者信息

Revyakin Andrey, Liu Chenyu, Ebright Richard H, Strick Terence R

机构信息

Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Science. 2006 Nov 17;314(5802):1139-43. doi: 10.1126/science.1131398.

Abstract

Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.

摘要

通过单分子DNA纳米操纵技术,我们发现流产起始涉及DNA“挤压”——即RNA聚合酶(RNAP)保持静止,解旋并将下游DNA拉入自身——并且这种挤压需要RNA合成且依赖于RNA长度。我们进一步表明启动子逃逸涉及挤压,并且挤压发生在大多数或所有启动子逃逸的情况中。我们的结果支持在逃逸过程中存在一种强制性应激中间体,其额外解开约一圈DNA,并且与该中间体中的应激提供打破RNAP-启动子和RNAP-起始因子相互作用以实现逃逸的驱动力这一观点一致。

相似文献

1
Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching.
Science. 2006 Nov 17;314(5802):1139-43. doi: 10.1126/science.1131398.
2
Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism.
Science. 2006 Nov 17;314(5802):1144-7. doi: 10.1126/science.1131399.
4
Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes.
Biophys J. 2006 Feb 15;90(4):1419-31. doi: 10.1529/biophysj.105.069252. Epub 2005 Nov 18.
5
Structural and mechanistic basis of reiterative transcription initiation.
Proc Natl Acad Sci U S A. 2022 Feb 1;119(5). doi: 10.1073/pnas.2115746119.
6
The mechanism of variability in transcription start site selection.
Elife. 2017 Nov 23;6:e32038. doi: 10.7554/eLife.32038.
7
Mechanism of transcription initiation and promoter escape by . RNA polymerase.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3032-E3040. doi: 10.1073/pnas.1618675114. Epub 2017 Mar 27.

引用本文的文献

1
Pol III escapes the promoter using a "protein spring" mechanism.
Sci China Life Sci. 2025 Sep 5. doi: 10.1007/s11427-025-3028-x.
2
Recent advances in mycobacterial transcription: insights beyond the general pathway.
J Bacteriol. 2025 Jul 24;207(7):e0015425. doi: 10.1128/jb.00154-25. Epub 2025 Jun 24.
3
Deciphering the human TopIIIα activity modulated by Rmi1 using magnetic tweezers.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf308.
5
'Splice-at-will' Cas12a crRNA engineering enabled direct quantification of ultrashort RNAs.
Nucleic Acids Res. 2025 Jan 11;53(2). doi: 10.1093/nar/gkaf002.
6
Transcription Kinetics in the Coronavirus Life Cycle.
Wiley Interdiscip Rev RNA. 2025 Jan-Feb;16(1):e70000. doi: 10.1002/wrna.70000.
9
Chromatin Buffers Torsional Stress During Transcription.
bioRxiv. 2024 Oct 18:2024.10.15.618270. doi: 10.1101/2024.10.15.618270.
10
Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression.
Mol Microbiol. 2024 Jul;122(1):81-112. doi: 10.1111/mmi.15283. Epub 2024 Jun 7.

本文引用的文献

1
Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes.
Biophys J. 2006 Feb 15;90(4):1419-31. doi: 10.1529/biophysj.105.069252. Epub 2005 Nov 18.
2
Direct observation of base-pair stepping by RNA polymerase.
Nature. 2005 Nov 24;438(7067):460-5. doi: 10.1038/nature04268. Epub 2005 Nov 13.
3
Picocalorimetry of transcription by RNA polymerase.
Biophys J. 2005 Dec;89(6):L61-3. doi: 10.1529/biophysj.105.074195. Epub 2005 Oct 20.
5
The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II.
Mol Cell. 2005 Jul 1;19(1):101-10. doi: 10.1016/j.molcel.2005.05.024.
6
Initial bubble collapse plays a key role in the transition to elongation in T7 RNA polymerase.
J Biol Chem. 2004 Oct 22;279(43):44277-85. doi: 10.1074/jbc.M409118200. Epub 2004 Aug 25.
7
Cross-linking of promoter DNA to T7 RNA polymerase does not prevent formation of a stable elongation complex.
J Biol Chem. 2004 Oct 22;279(43):44270-6. doi: 10.1074/jbc.M407688200. Epub 2004 Aug 10.
8
Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation.
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4776-80. doi: 10.1073/pnas.0307241101. Epub 2004 Mar 22.
9
Single-molecule DNA nanomanipulation: detection of promoter-unwinding events by RNA polymerase.
Methods Enzymol. 2003;370:577-98. doi: 10.1016/S0076-6879(03)70049-4.
10
Bacterial RNA polymerases: the wholo story.
Curr Opin Struct Biol. 2003 Feb;13(1):31-9. doi: 10.1016/s0959-440x(02)00005-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验