Suppr超能文献

胰腺特异性阻断转化生长因子-β信号通路并联合激活型Kras表达导致小鼠侵袭性胰腺导管腺癌。

Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression.

作者信息

Ijichi Hideaki, Chytil Anna, Gorska Agnieszka E, Aakre Mary E, Fujitani Yoshio, Fujitani Shuko, Wright Christopher V E, Moses Harold L

机构信息

Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.

出版信息

Genes Dev. 2006 Nov 15;20(22):3147-60. doi: 10.1101/gad.1475506.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an almost uniformly lethal disease in humans. Transforming growth factor-beta (TGF-beta) signaling plays an important role in PDAC progression, as indicated by the fact that Smad4, which encodes a central signal mediator downstream from TGF-beta, is deleted or mutated in 55% and the type II TGF-beta receptor (Tgfbr2) gene is altered in a smaller subset of human PDAC. Pancreas-specific Tgfbr2 knockout mice have been generated, alone or in the context of active Kras (Kras(G12D)) expression, using the Cre-loxP system driven by the endogenous Ptf1a (pancreatic transcription factor-1a) locus. Pancreas-selective Tgfbr2 knockout alone gave no discernable phenotype in 1.5 yr. Pancreas-specific Kras(G12D) activation alone essentially generated only intraepithelial neoplasia within 1 yr. In contrast, the Tgfbr2 knockout combined with Kras(G12D) expression developed well-differentiated PDAC with 100% penetrance and a median survival of 59 d. Heterozygous deletion of Tgfbr2 with Kras(G12D) expression also developed PDAC, which indicated a haploinsufficiency of TGF-beta signaling in this genetic context. The clinical and histopathological manifestations of the combined Kras(G12D) expression and Tgfbr2 knockout mice recapitulated human PDAC. The data show that blockade of TGF-beta signaling and activated Ras signaling cooperate to promote PDAC progression.

摘要

胰腺导管腺癌(PDAC)在人类中几乎是一种致死性疾病。转化生长因子-β(TGF-β)信号传导在PDAC进展中起重要作用,这一事实表明,编码TGF-β下游核心信号介质的Smad4在55%的病例中被缺失或突变,而II型TGF-β受体(Tgfbr2)基因在较小比例的人类PDAC中发生改变。利用由内源性Ptf1a(胰腺转录因子-1a)基因座驱动的Cre-loxP系统,已经构建了胰腺特异性Tgfbr2基因敲除小鼠,单独构建或在活性Kras(Kras(G12D))表达的背景下构建。单独进行胰腺选择性Tgfbr2基因敲除在1.5年内未产生明显的表型。单独进行胰腺特异性Kras(G12D)激活在1年内基本上仅产生上皮内瘤变。相比之下,Tgfbr2基因敲除与Kras(G12D)表达相结合则发展为高分化的PDAC,发生率为100%,中位生存期为59天。Tgfbr2杂合缺失与Kras(G12D)表达相结合也会发展为PDAC,这表明在这种遗传背景下TGF-β信号传导存在单倍剂量不足。Kras(G12D)表达与Tgfbr2基因敲除相结合的小鼠的临床和组织病理学表现重现了人类PDAC。数据表明,TGF-β信号传导的阻断与激活的Ras信号传导协同作用促进PDAC进展。

相似文献

5
Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer.
Oncogene. 2016 May 12;35(19):2485-95. doi: 10.1038/onc.2015.306. Epub 2015 Aug 17.
7
Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia.
Cancer Res. 2007 Sep 1;67(17):8121-30. doi: 10.1158/0008-5472.CAN-06-4167.
8
TGIF1 functions as a tumor suppressor in pancreatic ductal adenocarcinoma.
EMBO J. 2019 Jul 1;38(13):e101067. doi: 10.15252/embj.2018101067. Epub 2019 May 31.
9
Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
Gastroenterology. 2016 Jan;150(1):218-228.e12. doi: 10.1053/j.gastro.2015.09.013. Epub 2015 Sep 25.
10
MT1-MMP cooperates with Kras(G12D) to promote pancreatic fibrosis through increased TGF-β signaling.
Mol Cancer Res. 2011 Oct;9(10):1294-304. doi: 10.1158/1541-7786.MCR-11-0023. Epub 2011 Aug 19.

引用本文的文献

3
Combined Omipalisib and MAPK Inhibition Suppress PDAC Growth.
Cancers (Basel). 2025 Mar 29;17(7):1152. doi: 10.3390/cancers17071152.
4
Crosstalk of TGF-β and somatostatin signaling in adenocarcinoma and neuroendocrine tumors of the pancreas: a brief review.
Front Endocrinol (Lausanne). 2025 Mar 11;16:1511348. doi: 10.3389/fendo.2025.1511348. eCollection 2025.
5
Identification and analysis of pancreatic intraepithelial neoplasia: opportunities and challenges.
Front Endocrinol (Lausanne). 2025 Jan 7;15:1401829. doi: 10.3389/fendo.2024.1401829. eCollection 2024.
6
The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer.
Cell Signal. 2025 Mar;127:111584. doi: 10.1016/j.cellsig.2024.111584. Epub 2025 Jan 3.
7
Cytokines in cancer.
Cancer Cell. 2025 Jan 13;43(1):15-35. doi: 10.1016/j.ccell.2024.11.011. Epub 2024 Dec 12.
10
TGFβ in Pancreas and Colorectal Cancer: Opportunities to Overcome Therapeutic Resistance.
Clin Cancer Res. 2024 Sep 3;30(17):3676-3687. doi: 10.1158/1078-0432.CCR-24-0468.

本文引用的文献

3
Genetics and biology of pancreatic ductal adenocarcinoma.
Genes Dev. 2006 May 15;20(10):1218-49. doi: 10.1101/gad.1415606.
4
Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse.
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5947-52. doi: 10.1073/pnas.0601273103. Epub 2006 Apr 3.
5
Cancer statistics, 2006.
CA Cancer J Clin. 2006 Mar-Apr;56(2):106-30. doi: 10.3322/canjclin.56.2.106.
7
TGF-beta and cancer.
Cytokine Growth Factor Rev. 2006 Feb-Apr;17(1-2):29-40. doi: 10.1016/j.cytogfr.2005.09.006. Epub 2005 Nov 10.
8
TGF-beta and epithelial-to-mesenchymal transitions.
Oncogene. 2005 Aug 29;24(37):5764-74. doi: 10.1038/sj.onc.1208927.
9
Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum.
Neuron. 2005 Jul 21;47(2):201-13. doi: 10.1016/j.neuron.2005.06.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验