Suppr超能文献

弱滚动黏附增强细菌表面定植。

Weak rolling adhesion enhances bacterial surface colonization.

作者信息

Anderson Brett N, Ding Albert M, Nilsson Lina M, Kusuma Kaoru, Tchesnokova Veronika, Vogel Viola, Sokurenko Evgeni V, Thomas Wendy E

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA.

出版信息

J Bacteriol. 2007 Mar;189(5):1794-802. doi: 10.1128/JB.00899-06. Epub 2006 Dec 22.

Abstract

Bacterial adhesion to and subsequent colonization of surfaces are the first steps toward forming biofilms, which are a major concern for implanted medical devices and in many diseases. It has generally been assumed that strong irreversible adhesion is a necessary step for biofilm formation. However, some bacteria, such as Escherichia coli when binding to mannosylated surfaces via the adhesive protein FimH, adhere weakly in a mode that allows them to roll across the surface. Since single-point mutations or even increased shear stress can switch this FimH-mediated adhesion to a strong stationary mode, the FimH system offers a unique opportunity to investigate the role of the strength of adhesion independently from the many other factors that may affect surface colonization. Here we compare levels of surface colonization by E. coli strains that differ in the strength of adhesion as a result of flow conditions or point mutations in FimH. We show that the weak rolling mode of surface adhesion can allow a more rapid spreading during growth on a surface in the presence of fluid flow. Indeed, an attempt to inhibit the adhesion of strongly adherent bacteria by blocking mannose receptors with a soluble inhibitor actually increased the rate of surface colonization by allowing the bacteria to roll. This work suggests that (i) a physiological advantage to the weak adhesion demonstrated by commensal variants of FimH bacteria may be to allow rapid surface colonization and (ii) antiadhesive therapies intended to prevent biofilm formation can have the unintended effect of enhancing the rate of surface colonization.

摘要

细菌对表面的黏附以及随后在表面的定殖是形成生物膜的第一步,而生物膜是植入式医疗器械和许多疾病中的一个主要问题。人们通常认为,强烈的不可逆黏附是生物膜形成的必要步骤。然而,一些细菌,比如大肠杆菌通过黏附蛋白FimH与甘露糖基化表面结合时,是以一种能让它们在表面滚动的弱黏附模式黏附的。由于单点突变甚至增加剪切应力都能将这种由FimH介导的黏附转变为强烈的固定模式,FimH系统提供了一个独特的机会,可独立于许多其他可能影响表面定殖的因素来研究黏附强度的作用。在这里,我们比较了因流动条件或FimH中的点突变而导致黏附强度不同的大肠杆菌菌株的表面定殖水平。我们发现,在有流体流动的情况下,表面黏附的弱滚动模式能使细菌在表面生长过程中更快地扩散。实际上,用可溶性抑制剂阻断甘露糖受体来抑制强黏附细菌的黏附,结果却通过让细菌滚动而实际上提高了表面定殖率。这项研究表明:(i)FimH细菌共生变体所表现出的弱黏附的生理优势可能是为了实现快速的表面定殖;(ii)旨在防止生物膜形成的抗黏附疗法可能会产生意想不到的效果,即提高表面定殖率。

相似文献

1
Weak rolling adhesion enhances bacterial surface colonization.
J Bacteriol. 2007 Mar;189(5):1794-802. doi: 10.1128/JB.00899-06. Epub 2006 Dec 22.
2
Shear-dependent 'stick-and-roll' adhesion of type 1 fimbriated Escherichia coli.
Mol Microbiol. 2004 Sep;53(5):1545-57. doi: 10.1111/j.1365-2958.2004.04226.x.
3
Biofilm formation in a hydrodynamic environment by novel fimh variants and ramifications for virulence.
Infect Immun. 2001 Mar;69(3):1322-8. doi: 10.1128/IAI.69.3.1322-1328.2001.
4
Differential stability and trade-off effects of pathoadaptive mutations in the Escherichia coli FimH adhesin.
Infect Immun. 2007 Jul;75(7):3548-55. doi: 10.1128/IAI.01963-06. Epub 2007 May 14.
5
Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds.
PLoS Biol. 2006 Sep;4(9):e298. doi: 10.1371/journal.pbio.0040298.
6
Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations.
Eur J Clin Microbiol Infect Dis. 2017 Mar;36(3):467-478. doi: 10.1007/s10096-016-2820-8. Epub 2016 Nov 5.
10
The cysteine bond in the Escherichia coli FimH adhesin is critical for adhesion under flow conditions.
Mol Microbiol. 2007 Sep;65(5):1158-69. doi: 10.1111/j.1365-2958.2007.05858.x.

引用本文的文献

1
Autoinducer-2 promotes adherence of through facilitating the expression of MSHA type IV pili genes mediated by c-di-GMP.
Appl Environ Microbiol. 2023 Nov 29;89(11):e0081923. doi: 10.1128/aem.00819-23. Epub 2023 Oct 30.
2
Neutralizing Antibodies Against Allosteric Proteins: Insights From a Bacterial Adhesin.
J Mol Biol. 2022 Sep 15;434(17):167717. doi: 10.1016/j.jmb.2022.167717. Epub 2022 Jul 4.
4
Behavior of with Variable Surface Morphology Changes on Charged Semiconductor Interfaces.
ACS Appl Bio Mater. 2019 Sep 16;2(9):4044-4051. doi: 10.1021/acsabm.9b00573. Epub 2019 Aug 23.
5
The Nutrient and Energy Pathway Requirements for Surface Motility of Nonpathogenic and Uropathogenic .
J Bacteriol. 2021 Jun 1;203(11). doi: 10.1128/JB.00467-20. Epub 2021 Mar 29.
6
Protein folding modulates the chemical reactivity of a Gram-positive adhesin.
Nat Chem. 2021 Feb;13(2):172-181. doi: 10.1038/s41557-020-00586-x. Epub 2020 Nov 30.
7
A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin.
PLoS Pathog. 2020 Jan 9;16(1):e1008247. doi: 10.1371/journal.ppat.1008247. eCollection 2020 Jan.
8
Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus.
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):320-330. doi: 10.1021/acsami.8b18302. Epub 2018 Dec 29.
9
Mechanical architecture and folding of E. coli type 1 pilus domains.
Nat Commun. 2018 Jul 16;9(1):2758. doi: 10.1038/s41467-018-05107-6.

本文引用的文献

2
4
Motility influences biofilm architecture in Escherichia coli.
Appl Microbiol Biotechnol. 2006 Sep;72(2):361-7. doi: 10.1007/s00253-005-0263-8. Epub 2006 Jan 6.
6
Catch-bond model derived from allostery explains force-activated bacterial adhesion.
Biophys J. 2006 Feb 1;90(3):753-64. doi: 10.1529/biophysj.105.066548. Epub 2005 Nov 4.
8
Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis.
Infect Immun. 2005 Apr;73(4):2504-14. doi: 10.1128/IAI.73.4.2504-2514.2005.
9
Survival strategies of infectious biofilms.
Trends Microbiol. 2005 Jan;13(1):34-40. doi: 10.1016/j.tim.2004.11.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验