Suppr超能文献

5-Azacytidine-induced demethylation of DNA to senescent level does not block proliferation of human fibroblasts.

作者信息

Gray M D, Jesch S A, Stein G H

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347.

出版信息

J Cell Physiol. 1991 Dec;149(3):477-84. doi: 10.1002/jcp.1041490317.

Abstract

IMR-90 human diploid fibroblasts (HDF) lose from 30-50% of their genomic 5-methyldeoxycytidine (5mdC) during the cellular aging process. In contrast, immortal SV40-transformed IMR-90 maintain a constant level of 5mdC in culture. Precrisis SV40-transformed HDF (AG3204) represent a stage in between normal cell aging and immortalization because these cells still have a finite proliferative lifespan, but it is longer than that of normal HDF and ends in cell death rather than in G1-arrest. We find that AG3204 cells continue to lose from 12-33% of their 5mdC after a population has become 99% positive for SV40 T-antigen. Both IMR-90 cells and AG3204 cells have similar levels of 5mdC (average of 2.25%) at the end of lifespan. We investigated whether this level of 5mdC is an absolute block to further proliferation by treating IMR-90 and AG3204 cells with 5-azacytidine (5azaC) to reduce their 5mdC levels below the terminal level normally achieved at end of lifespan. We find that both IMR-90 and AG3204 cells undergo extensive proliferation with subterminal levels of 5mdC and that the lifespans of both cell types are shortened by 5azaC treatment. These studies indicate that random genomic DNA demethylation to a specific level of 5mdC is not a direct cause of finite proliferative lifespan. However, the correlation between accelerated DNA demethylation and accelerated aging still suggests that these two phenomena are related. Two ways to explain this relationship are: (1) DNA demethylation during aging is not random, and/or (2) both DNA demethylation and other independent aging processes cooperate to produce finite lifespan. In both cases, accelerated random DNA demethylation could accelerate aging, but not necessarily in direct relationship to the final genomic level of 5mdC achieved during the normal aging process.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验