Suppr超能文献

膜蛋白的跨膜螺旋可能会发生弯曲以适应疏水不匹配。

Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.

作者信息

Yeagle Philip L, Bennett Michael, Lemaître Vincent, Watts Anthony

机构信息

Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA.

出版信息

Biochim Biophys Acta. 2007 Mar;1768(3):530-7. doi: 10.1016/j.bbamem.2006.11.018. Epub 2006 Dec 15.

Abstract

A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge the hydrophobic surface within the lipid bilayer to satisfy the hydrophobic effect if the helix length exceeds the bilayer width. The hydrophobic surface of transmembrane helix 1 (TM1) of lactose permease, LacY, is accessible to the bilayer, and too long to be accommodated in the hydrophobic portion of a typical lipid bilayer if oriented perpendicular to the membrane surface. Hence, nuclear magnetic resonance (NMR) data and molecular dynamics simulations show that TM1 from LacY may flex as well as tilt to satisfy the hydrophobic mismatch with the bilayer. In an analogous study of the hydrophobic mismatch of TM7 of bovine rhodopsin, similar flexing of the transmembrane segment near the conserved NPxxY sequence is observed. As a control, NMR data on TM5 of lacY, which is much shorter than TM1, show that TM5 is likely to tilt, but not flex, consistent with the close match between the extent of hydrophobic surface of the peptide and the hydrophobic thickness of the bilayer. These data suggest mechanisms by which the lipid bilayer in which the protein is embedded modulates conformation, and thus function, of integral membrane proteins through interactions with the hydrophobic transmembrane helices.

摘要

本文提出了一种跨膜蛋白结构及功能的膜调节新机制,即蛋白质疏水表面与脂质双分子层疏水内部之间的不匹配会导致蛋白质跨膜片段发生弯曲或扭转。对模型疏水跨膜肽的研究预测,如果螺旋长度超过双分子层宽度,螺旋会倾斜以使疏水表面浸没在脂质双分子层内,从而满足疏水效应。乳糖通透酶LacY的跨膜螺旋1(TM1)的疏水表面可与双分子层接触,若垂直于膜表面定向,其长度过长以至于无法容纳在典型脂质双分子层的疏水部分中。因此,核磁共振(NMR)数据和分子动力学模拟表明,LacY的TM1可能会弯曲和倾斜,以满足与双分子层的疏水不匹配。在一项关于牛视紫红质TM7疏水不匹配的类似研究中,观察到在保守的NPxxY序列附近的跨膜片段有类似的弯曲。作为对照,对比TM1短得多的LacY的TM5的NMR数据表明,TM5可能会倾斜,但不会弯曲,这与肽的疏水表面范围与双分子层疏水厚度之间的紧密匹配一致。这些数据表明了蛋白质所嵌入的脂质双分子层通过与疏水跨膜螺旋相互作用来调节整合膜蛋白构象进而调节其功能的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验