Suppr超能文献

墨西哥洞穴盲鱼(墨西哥丽脂鲤)的退化进化

Regressive evolution in the Mexican cave tetra, Astyanax mexicanus.

作者信息

Protas Meredith, Conrad Melissa, Gross Joshua B, Tabin Clifford, Borowsky Richard

机构信息

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Curr Biol. 2007 Mar 6;17(5):452-4. doi: 10.1016/j.cub.2007.01.051. Epub 2007 Feb 15.

Abstract

The evolutionary forces driving the reduction of eyes and pigmentation in cave-adapted animals are unknown; Darwin famously questioned the role of natural selection in eye loss in cave fishes: "As it is difficult to imagine that eyes, although useless, could be in any way injurious to animals living in darkness, I attribute their loss wholly to disuse"[1]. We studied the genetics of eye and pigmentation regression in the Mexican cave tetra, Astyanax mexicanus, by mapping and quantitative trait loci (QTL) analysis. We also mapped QTL for the putatively constructive traits of jaw size, tooth number, and numbers of taste buds. The data suggest that eyes and pigmentation regressed through different mechanisms. Cave alleles at every eye or lens QTL we detected caused size reductions, consistent with evolution by natural selection but not with drift. QTL polarities for melanophore number were mixed, however, consistent with genetic drift. Arguments against a role for selection in the regression of cave-fish eyes cited the insignificant cost of their development [2, 3], but we argue that the energetic cost of their maintenance is sufficiently high for eyes to be detrimental in the cave environment. Regression can be caused either by selection or drift.

摘要

驱动洞穴适应性动物眼睛退化和色素沉着减少的进化力量尚不清楚;达尔文曾对自然选择在洞穴鱼类眼睛退化中所起的作用提出过著名质疑:“由于很难想象眼睛即便无用,却会以任何方式对生活在黑暗中的动物造成伤害,所以我将它们的消失完全归因于不用”[1]。我们通过图谱绘制和数量性状基因座(QTL)分析,研究了墨西哥洞穴丽脂鲤(Astyanax mexicanus)眼睛和色素沉着退化的遗传学。我们还绘制了与颌骨大小、牙齿数量和味蕾数量等假定的建设性性状相关的QTL图谱。数据表明,眼睛和色素沉着是通过不同机制退化的。我们检测到的每个眼睛或晶状体QTL的洞穴等位基因都会导致大小减小,这与自然选择导致的进化一致,但与遗传漂变不一致。然而,黑色素细胞数量的QTL极性是混合的,这与遗传漂变一致。反对选择在洞穴鱼眼睛退化中起作用的观点认为其发育成本微不足道[2, 3],但我们认为,在洞穴环境中,维持眼睛的能量成本足够高,以至于眼睛会产生不利影响。退化可能是由选择或漂变引起的。

相似文献

1
Regressive evolution in the Mexican cave tetra, Astyanax mexicanus.
Curr Biol. 2007 Mar 6;17(5):452-4. doi: 10.1016/j.cub.2007.01.051. Epub 2007 Feb 15.
3
A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus.
PLoS Genet. 2009 Jan;5(1):e1000326. doi: 10.1371/journal.pgen.1000326. Epub 2009 Jan 2.
4
Regressive evolution in Astyanax cavefish.
Annu Rev Genet. 2009;43:25-47. doi: 10.1146/annurev-genet-102108-134216.
5
Selection Maintains the Phenotypic Divergence of Cave and Surface Fish.
Am Nat. 2023 Jul;202(1):55-63. doi: 10.1086/724661. Epub 2023 Jun 9.
6
Multi-trait evolution in a cave fish, Astyanax mexicanus.
Evol Dev. 2008 Mar-Apr;10(2):196-209. doi: 10.1111/j.1525-142X.2008.00227.x.
7
Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci.
Genetics. 2014 Apr;196(4):1303-19. doi: 10.1534/genetics.114.161661. Epub 2014 Feb 4.
9
Trait Loss in Evolution: What Cavefish Have Taught Us about Mechanisms Underlying Eye Regression.
Integr Comp Biol. 2023 Aug 23;63(2):393-406. doi: 10.1093/icb/icad032.

引用本文的文献

4
Mutations in the albinism gene oca2 alter vision-dependent prey capture behavior in the Mexican tetra.
J Exp Biol. 2025 Apr 1;228(7). doi: 10.1242/jeb.249881. Epub 2025 Apr 11.
5
Will I stay or will I go? Eye morphology predicts individual migratory propensity in a partial migrant.
J Anim Ecol. 2025 May;94(5):874-883. doi: 10.1111/1365-2656.70015. Epub 2025 Feb 27.
7
Beyond the mosaic model of brain evolution: Rearing environment defines local and global plasticity.
Ann N Y Acad Sci. 2024 Dec;1542(1):58-66. doi: 10.1111/nyas.15267. Epub 2024 Nov 25.
8
The spatiotemporal and genetic architecture of extraoral taste buds in Astyanax cavefish.
Commun Biol. 2024 Aug 6;7(1):951. doi: 10.1038/s42003-024-06635-2.
10
Mutations in the albinism gene alter vision-dependent prey capture behavior in the Mexican tetra.
bioRxiv. 2024 Jun 20:2024.06.17.599419. doi: 10.1101/2024.06.17.599419.

本文引用的文献

2
Adaptive evolution of eye degeneration in the Mexican blind cavefish.
J Hered. 2005 May-Jun;96(3):185-96. doi: 10.1093/jhered/esi028. Epub 2005 Jan 13.
3
Hedgehog signalling controls eye degeneration in blind cavefish.
Nature. 2004 Oct 14;431(7010):844-7. doi: 10.1038/nature02864.
4
Retinal oxygen: fundamental and clinical aspects.
Arch Ophthalmol. 2003 Apr;121(4):547-57. doi: 10.1001/archopht.121.4.547.
5
Mapping a cave fish genome: polygenic systems and regressive evolution.
J Hered. 2002 Jan-Feb;93(1):19-21. doi: 10.1093/jhered/93.1.19.
7
Oxygen consumption and ATP changes of the vertebrate photoreceptor.
Exp Eye Res. 1980 Sep;31(3):271-88. doi: 10.1016/s0014-4835(80)80037-6.
8
Shedding of discs from rod outer segments in the rhesus monkey.
J Ultrastruct Res. 1971 Jan;34(1):190-203. doi: 10.1016/s0022-5320(71)90014-1.
9
Electrical and metabolic manifestations of receptor and higher-order neuron activity in vertebrate retina.
Adv Exp Med Biol. 1972;24(0):101-18. doi: 10.1007/978-1-4684-8231-7_11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验