Suppr超能文献

环磷酸腺苷(cAMP)信号通路对高亲和力胆碱转运体和胆碱能位点的差异调节

Differential regulation of the high affinity choline transporter and the cholinergic locus by cAMP signaling pathways.

作者信息

Brock Martina, Nickel Ann-Christin, Madziar Beata, Blusztajn Jan Krzysztof, Berse Brygida

机构信息

Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 715 Albany Street, Room L-808C, Boston, MA 02118, USA.

出版信息

Brain Res. 2007 May 11;1145:1-10. doi: 10.1016/j.brainres.2007.01.119. Epub 2007 Feb 2.

Abstract

Synthesis, storage and release of acetylcholine (ACh) require the expression of several specialized enzymes, including choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and the high-affinity choline transporter (CHT). Extracellular factors that regulate CHT expression and their signaling pathways remain poorly characterized. Using the NSC-19 cholinergic cell line, derived from embryonic spinal cord, we compared the effects of the second messenger cAMP on the expression of CHT and the cholinergic locus containing the ChAT and VAChT genes. Treatment of NSC-19 cells with dbcAMP and forskolin, thus increasing intracellular cAMP levels, significantly reduced CHT mRNA expression, while it upregulated ChAT/VAChT mRNA levels and ChAT activity. The cAMP-induced CHT downregulation was independent of PKA activity, as shown in treatments with the PKA inhibitor H-89. The alternative Epac-Rap pathway, when stimulated by a specific Epac activator, led to significant downregulation of CHT and ChAT, and, to a lesser extent, VAChT. In contrast, the PKA activator 6-BNZ-cAMP stimulated the expression of all three genes, but with varying concentration-dependence profiles. Our results indicate that elevations of intraneuronal cAMP concentration have differential effects on the cholinergic phenotype, depending on the involvement of different downstream effectors. Interestingly, although CHT is expressed predominantly in cholinergic cells, its regulation appears to be distinct from that of the cholinergic locus.

摘要

乙酰胆碱(ACh)的合成、储存和释放需要多种特殊酶的表达,包括胆碱乙酰转移酶(ChAT)、囊泡乙酰胆碱转运体(VAChT)和高亲和力胆碱转运体(CHT)。调节CHT表达的细胞外因子及其信号通路仍未得到充分表征。利用源自胚胎脊髓的NSC-19胆碱能细胞系,我们比较了第二信使cAMP对CHT表达以及包含ChAT和VAChT基因的胆碱能基因座表达的影响。用二丁酰环磷腺苷(dbcAMP)和福斯可林处理NSC-19细胞,从而提高细胞内cAMP水平,显著降低CHT mRNA表达,同时上调ChAT/VAChT mRNA水平和ChAT活性。如用PKA抑制剂H-89处理所示,cAMP诱导的CHT下调与PKA活性无关。当由特定的Epac激活剂刺激时,替代的Epac-Rap途径导致CHT和ChAT显著下调,对VAChT的下调程度较小。相比之下,PKA激活剂6-苄基-cAMP刺激所有三个基因的表达,但具有不同的浓度依赖性特征。我们的结果表明,神经元内cAMP浓度的升高对胆碱能表型有不同的影响,这取决于不同下游效应器的参与情况。有趣的是,尽管CHT主要在胆碱能细胞中表达,但其调节似乎与胆碱能基因座的调节不同。

相似文献

1
Differential regulation of the high affinity choline transporter and the cholinergic locus by cAMP signaling pathways.
Brain Res. 2007 May 11;1145:1-10. doi: 10.1016/j.brainres.2007.01.119. Epub 2007 Feb 2.
2
Expression of high affinity choline transporter during mouse development in vivo and its upregulation by NGF and BMP-4 in vitro.
Brain Res Dev Brain Res. 2005 Jun 30;157(2):132-40. doi: 10.1016/j.devbrainres.2005.03.013.
4
The cholinergic gene locus is coordinately regulated by protein kinase A II in PC12 cells.
J Neurochem. 1998 Sep;71(3):1118-26. doi: 10.1046/j.1471-4159.1998.71031118.x.
6
Non-neuronal expression of choline acetyltransferase in the rat kidney.
Life Sci. 2011 Sep 12;89(11-12):408-14. doi: 10.1016/j.lfs.2011.07.011. Epub 2011 Jul 23.
8
Asymmetric regulation by estrogen at the cholinergic gene locus in differentiated NG108-15 neuronal cells.
Life Sci. 2010 Jun 5;86(23-24):839-43. doi: 10.1016/j.lfs.2010.03.014. Epub 2010 Mar 27.
9
Regulatory mechanisms of acetylcholine synthesis and release by T cells.
Life Sci. 2012 Nov 27;91(21-22):981-5. doi: 10.1016/j.lfs.2012.04.031. Epub 2012 Apr 30.

引用本文的文献

1
Basal forebrain cholinergic signalling: development, connectivity and roles in cognition.
Nat Rev Neurosci. 2023 Apr;24(4):233-251. doi: 10.1038/s41583-023-00677-x. Epub 2023 Feb 23.
2
Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter.
Front Mol Neurosci. 2017 Feb 27;10:40. doi: 10.3389/fnmol.2017.00040. eCollection 2017.
4
Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases.
Neurochem Res. 2013 Aug;38(8):1523-42. doi: 10.1007/s11064-013-1060-x. Epub 2013 May 16.
5
Non-neuronal cholinergic machinery present in cardiomyocytes offsets hypertrophic signals.
J Mol Cell Cardiol. 2012 Aug;53(2):206-16. doi: 10.1016/j.yjmcc.2012.05.003. Epub 2012 May 14.
6
Substrate-induced internalization of the high-affinity choline transporter.
J Neurosci. 2011 Oct 19;31(42):14989-97. doi: 10.1523/JNEUROSCI.2983-11.2011.
7
Nuclear choline acetyltransferase activates transcription of a high-affinity choline transporter.
J Biol Chem. 2011 Feb 18;286(7):5836-45. doi: 10.1074/jbc.M110.147611. Epub 2010 Dec 16.
8
Differential distribution of exchange proteins directly activated by cyclic AMP within the adult rat retina.
Neuroscience. 2010 Feb 3;165(3):955-67. doi: 10.1016/j.neuroscience.2009.10.054. Epub 2009 Oct 31.
10
Epac and PKA: a tale of two intracellular cAMP receptors.
Acta Biochim Biophys Sin (Shanghai). 2008 Jul;40(7):651-62. doi: 10.1111/j.1745-7270.2008.00438.x.

本文引用的文献

1
A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation.
Mol Cell Biol. 2006 Dec;26(23):9136-47. doi: 10.1128/MCB.00332-06. Epub 2006 Sep 25.
2
Cell physiology of cAMP sensor Epac.
J Physiol. 2006 Nov 15;577(Pt 1):5-15. doi: 10.1113/jphysiol.2006.119644. Epub 2006 Sep 14.
3
Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells.
Mol Biol Cell. 2005 Dec;16(12):5639-48. doi: 10.1091/mbc.e05-05-0432. Epub 2005 Oct 5.
7
Expression of high affinity choline transporter during mouse development in vivo and its upregulation by NGF and BMP-4 in vitro.
Brain Res Dev Brain Res. 2005 Jun 30;157(2):132-40. doi: 10.1016/j.devbrainres.2005.03.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验