Suppr超能文献

用于估算交通隧道空气质量的改进灰色模型。

Modified grey model for estimating traffic tunnel air quality.

作者信息

Lee Cheng-Chung, Wan Terng-Jou, Kuo Chao-Yin, Chung Chung-Yi

机构信息

Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliou, Yunlin, Taiwan.

出版信息

Environ Monit Assess. 2007 Sep;132(1-3):351-64. doi: 10.1007/s10661-006-9539-4. Epub 2007 Mar 7.

Abstract

This study compared three forecasting models based on the mean absolute percentage errors (MAPE) of their accuracy in forecasting air pollution in a traffic tunnel: the Grey model (GM), the combination model used four sample point and five sample point prediction with GM (1,1)(GM(1,1)(4 + 5)), and the modified grey model (MGM). An MGM was combined using the four points of the original sequence using the original grey prediction GM (1,1) for short-term forecasting. The proposed method cannot only enhance the prediction accuracy of the original grey model, but can also solve the jump data forecasting problem something for which the original grey model is inappropriate. The MAPE was applied to the models, and the MGM found the proposed method to be simple and efficient. The MAPE of MGM, calculated over 3 h of forecasts, were as follows: 10.12 (Upwind), 10.07 (Middle) and 7.68 (Downwind) for CO; 10.79 (Upwind), 6.05 (Middle) and 5.98 (Downwind) for NOx, and 11.67 (Upwind), 7.32 (Middle) and 4.56 (Downwind) for NMHC. The MGM model results reveal that the combined forecasts can significantly decrease the overall forecasting error. Results of this demonstrate that MGM can accurately forecast air pollution in the Kaohsiung Chung-Cheng Tunnel.

摘要

本研究基于三种预测模型在交通隧道空气污染预测准确性方面的平均绝对百分比误差(MAPE)进行了比较:灰色模型(GM)、使用四个采样点和五个采样点预测的GM(1,1)组合模型(GM(1,1)(4 + 5))以及改进灰色模型(MGM)。MGM使用原始序列的四个点,并采用原始灰色预测GM(1,1)进行短期预测。该方法不仅能提高原始灰色模型的预测准确性,还能解决原始灰色模型不适用于的跳跃数据预测问题。将MAPE应用于这些模型,发现MGM提出的方法简单有效。MGM在3小时预测期间计算得出的MAPE如下:一氧化碳的MAPE分别为:上风处10.12、中间处10.07、下风处7.68;氮氧化物的MAPE分别为:上风处10.79、中间处6.05、下风处5.98;非甲烷总烃的MAPE分别为:上风处11.67、中间处7.32、下风处4.56。MGM模型结果表明,组合预测可显著降低整体预测误差。研究结果表明,MGM能够准确预测高雄中正隧道的空气污染情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验