Smith Danielle G, Cappai Roberto, Barnham Kevin J
Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia.
Biochim Biophys Acta. 2007 Aug;1768(8):1976-90. doi: 10.1016/j.bbamem.2007.02.002. Epub 2007 Feb 9.
There is a growing body of evidence to support a role for oxidative stress in Alzheimer's disease (AD), with increased levels of lipid peroxidation, DNA and protein oxidation products (HNE, 8-HO-guanidine and protein carbonyls respectively) in AD brains. The brain is a highly oxidative organ consuming 20% of the body's oxygen despite accounting for only 2% of the total body weight. With normal ageing the brain accumulates metals ions such iron (Fe), zinc (Zn) and copper (Cu). Consequently the brain is abundant in antioxidants to control and prevent the detrimental formation of reactive oxygen species (ROS) generated via Fenton chemistry involving redox active metal ion reduction and activation of molecular oxygen. In AD there is an over accumulation of the Amyloid beta peptide (Abeta), this is the result of either an elevated generation from amyloid precursor protein (APP) or inefficient clearance of Abeta from the brain. Abeta can efficiently generate reactive oxygen species in the presence of the transition metals copper and iron in vitro. Under oxidative conditions Abeta will form stable dityrosine cross-linked dimers which are generated from free radical attack on the tyrosine residue at position 10. There are elevated levels of urea and SDS resistant stable linked Abeta oligomers as well as dityrosine cross-linked peptides and proteins in AD brain. Since soluble Abeta levels correlate best with the degree of degeneration [C.A. McLean, R.A. Cherny, F.W. Fraser, S.J. Fuller, M.J. Smith, K. Beyreuther, A.I. Bush, C.L. Masters, Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol. 46 (1999) 860-866] we suggest that the toxic Abeta species corresponds to a soluble dityrosine cross-linked oligomer. Current therapeutic strategies using metal chelators such as clioquinol and desferrioxamine have had some success in altering the progression of AD symptoms. Similarly, natural antioxidants curcumin and ginkgo extract have modest but positive effects in slowing AD development. Therefore, drugs that target the oxidative pathways in AD could have genuine therapeutic efficacy.
越来越多的证据支持氧化应激在阿尔茨海默病(AD)中起作用,AD患者大脑中脂质过氧化、DNA和蛋白质氧化产物(分别为HNE、8-羟基鸟嘌呤和蛋白质羰基)的水平升高。大脑是一个高度氧化的器官,尽管仅占体重的2%,却消耗了身体20%的氧气。随着正常衰老,大脑会积累铁(Fe)、锌(Zn)和铜(Cu)等金属离子。因此,大脑富含抗氧化剂,以控制和防止通过涉及氧化还原活性金属离子还原和分子氧活化的芬顿化学反应产生的活性氧(ROS)的有害形成。在AD中,β淀粉样肽(Aβ)过度积累,这是淀粉样前体蛋白(APP)生成增加或Aβ从大脑中清除效率低下的结果。在体外,Aβ在过渡金属铜和铁存在的情况下可以有效产生活性氧。在氧化条件下,Aβ会形成稳定的二酪氨酸交联二聚体,这些二聚体是由对第10位酪氨酸残基的自由基攻击产生的。AD大脑中尿素和SDS抗性稳定连接的Aβ寡聚体以及二酪氨酸交联肽和蛋白质的水平升高。由于可溶性Aβ水平与退化程度最相关[C.A.麦克林、R.A.切尔尼、F.W.弗雷泽、S.J.富勒、M.J.史密斯、K.贝鲁特、A.I.布什、C.L.马斯特斯,可溶性Aβ淀粉样蛋白池作为阿尔茨海默病神经退行性变严重程度的决定因素,《神经病学纪事》46(1999)860 - 866],我们认为有毒的Aβ物种对应于可溶性二酪氨酸交联寡聚体。目前使用金属螯合剂如氯碘羟喹和去铁胺的治疗策略在改变AD症状进展方面取得了一些成功。同样,天然抗氧化剂姜黄素和银杏提取物在减缓AD发展方面有适度但积极的作用。因此,针对AD氧化途径的药物可能具有真正的治疗效果。