Suppr超能文献

使用高通量定量构效关系预测模型预测人类饮食中天然存在的化学物质的啮齿动物致癌潜力。

Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.

作者信息

Valerio Luis G, Arvidson Kirk B, Chanderbhan Ronald F, Contrera Joseph F

机构信息

Division of Biotechnology and GRAS Notice Review, US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, HFS-255, 5100 Paint Branch Parkway, College Park, MD 20740, USA.

出版信息

Toxicol Appl Pharmacol. 2007 Jul 1;222(1):1-16. doi: 10.1016/j.taap.2007.03.012. Epub 2007 Mar 24.

Abstract

Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals, comprised primarily of pharmaceutical, industrial and some natural products developed under an FDA-MDL cooperative research and development agreement (CRADA). The predictive performance for this group of dietary natural products and the control group was 97% sensitivity and 80% concordance. Specificity was marginal at 53%. This study finds that the in silico QSAR analysis employing this software's rodent carcinogenicity database is capable of identifying the rodent carcinogenic potential of naturally occurring organic molecules found in the human diet with a high degree of sensitivity. It is the first study to demonstrate successful QSAR predictive modeling of naturally occurring carcinogens found in the human diet using an external validation test. Further test validation of this software and expansion of the training data set for dietary chemicals will help to support the future use of such QSAR methods for screening and prioritizing the risk of dietary chemicals when actual animal data are inadequate, equivocal, or absent.

摘要

与美国食品药品监督管理局(FDA)的关键路径计划一致,目前正在评估采用定量构效关系(QSAR)模型的预测毒理学软件程序,用于对致癌性、致突变性和生殖毒性等高敏感终点进行监管风险评估和科学决策支持。在FDA食品安全与应用营养中心的食品添加剂安全办公室以及药品评估与研究中心的信息学与计算安全分析人员(ICSAS),正在开发和评估将计算性构效关系工具用于定性和定量风险评估应用。当前感兴趣的一种工具是啮齿动物致癌性的MDL-QSAR预测判别分析模型,FDA的ICSAS此前已针对其在制药应用方面进行了评估。本文所述的研究旨在评估该软件在估计人类饮食中发现的有机天然小分子化学物质致癌潜力方面的效用。此外,一组在啮齿动物致癌性研究中呈阳性的19种已知合成膳食成分作为对照组。在天然化学物质测试组中,发现有101种适合使用该软件的判别分析建模方法进行预测建模。将对这些化合物进行的预测与每种化合物致癌潜力的已发表实验证据进行比较。实验证据包括相关毒理学研究,如啮齿动物癌症生物测定、啮齿动物抗癌性研究、遗传毒性研究以及化学结构警示的存在情况。计算预测性能的统计指标以评估预测建模方法的效用。结果显示,使用该软件的啮齿动物致癌性模块对1200多种化学物质进行预测时性能良好,这些化学物质主要包括根据FDA与MDL的合作研发协议(CRADA)开发的药品、工业产品和一些天然产物。该组膳食天然产物和对照组的预测性能为97%的灵敏度和80%的一致性。特异性为53%,处于边缘水平。本研究发现,采用该软件啮齿动物致癌性数据库进行的计算机模拟QSAR分析能够高度灵敏地识别出人类饮食中天然存在的有机分子的啮齿动物致癌潜力。这是第一项使用外部验证测试成功对人类饮食中天然存在的致癌物进行QSAR预测建模的研究。对该软件进行进一步的测试验证以及扩大膳食化学物质的训练数据集,将有助于支持未来在实际动物数据不足、不明确或缺乏时,使用此类QSAR方法对膳食化学物质的风险进行筛选和排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验