Suppr超能文献

果蝇的进食生理学与咖啡因测定法

Prandiology of Drosophila and the CAFE assay.

作者信息

Ja William W, Carvalho Gil B, Mak Elizabeth M, de la Rosa Noelle N, Fang Annie Y, Liong Jonathan C, Brummel Ted, Benzer Seymour

机构信息

Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 May 15;104(20):8253-6. doi: 10.1073/pnas.0702726104. Epub 2007 May 9.

Abstract

Studies of feeding behavior in genetically tractable invertebrate model systems have been limited by the lack of proper methodology. We introduce the Capillary Feeder (CAFE), a method allowing precise, real-time measurement of ingestion by individual or grouped fruit flies on the scale of minutes to days. Using this technique, we conducted the first quantitative analysis of prandial behavior in Drosophila melanogaster. Our results allow the dissection of feeding into discrete bouts of ingestion, defining two separate parameters, meal volume and frequency, that can be uncoupled and thus are likely to be independently regulated. In addition, our long-term measurements show that flies can ingest as much as 1.7x their body mass over 24 h. Besides the study of appetite, the CAFE can be used to monitor oral drug delivery. As an illustration, we used the CAFE to test the effects of dietary supplementation with two compounds, paraquat and ethanol, on food ingestion and preference. Paraquat, a prooxidant widely used in stress tests, had a strong anorexigenic effect. In contrast, in a feeding preference assay, ethanol-laced food, but not ethanol by itself, acted as an attractant.

摘要

在基因易处理的无脊椎动物模型系统中,对摄食行为的研究一直受到缺乏适当方法的限制。我们引入了毛细管喂食器(CAFE),这是一种能够在数分钟到数天的时间尺度上,对单个或成群的果蝇摄食进行精确实时测量的方法。利用这项技术,我们对黑腹果蝇的进食行为进行了首次定量分析。我们的结果能够将摄食分解为离散的进食回合,定义了两个独立的参数,即进食量和进食频率,它们可以分开,因此可能受到独立调节。此外,我们的长期测量表明,果蝇在24小时内可以摄取多达其体重1.7倍的食物。除了用于研究食欲,CAFE还可用于监测口服药物递送。作为例证,我们使用CAFE测试了两种化合物百草枯和乙醇的膳食补充对食物摄取和偏好的影响。百草枯是一种广泛用于应激测试的促氧化剂,具有强烈的厌食作用。相比之下,在进食偏好试验中,含乙醇的食物而非乙醇本身起到了引诱剂的作用。

相似文献

1
Prandiology of Drosophila and the CAFE assay.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8253-6. doi: 10.1073/pnas.0702726104. Epub 2007 May 9.
2
The CApillary FEeder Assay Measures Food Intake in Drosophila melanogaster.
J Vis Exp. 2017 Mar 17(121):55024. doi: 10.3791/55024.
3
4
Simultaneous measurement of sleep and feeding in individual Drosophila.
Nat Protoc. 2017 Nov;12(11):2355-2366. doi: 10.1038/nprot.2017.096. Epub 2017 Oct 12.
6
Long-lasting, experience-dependent alcohol preference in Drosophila.
Addict Biol. 2014 May;19(3):392-401. doi: 10.1111/adb.12105. Epub 2013 Oct 29.
7
Automated monitoring and quantitative analysis of feeding behaviour in Drosophila.
Nat Commun. 2014 Aug 4;5:4560. doi: 10.1038/ncomms5560.
8
Food deprivation increases the low-dose locomotor stimulant response to ethanol in Drosophila melanogaster.
Pharmacol Biochem Behav. 2013 Oct;111:76-83. doi: 10.1016/j.pbb.2013.08.010. Epub 2013 Aug 29.
9
The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.
Chem Senses. 2010 Nov;35(9):813-22. doi: 10.1093/chemse/bjq084. Epub 2010 Aug 25.
10
Immediate and delayed effects of nutrient-sensing in fruit fly Drosophila melanogaster.
Behav Processes. 2019 Jul;164:133-142. doi: 10.1016/j.beproc.2019.04.016. Epub 2019 Apr 30.

引用本文的文献

2
The mitochondrial aspartate transporter Ucp4a regulates muscle aging and animal lifespan in Drosophila melanogaster.
PLoS One. 2025 Aug 14;20(8):e0323980. doi: 10.1371/journal.pone.0323980. eCollection 2025.
3
as a neurobehavioral model for sex differences in stress response.
Front Behav Neurosci. 2025 Jul 11;19:1581763. doi: 10.3389/fnbeh.2025.1581763. eCollection 2025.
4
Protocol to measure temporal consumption and feeding choices of Drosophila adults using capillaries.
STAR Protoc. 2025 Jul 8;6(3):103931. doi: 10.1016/j.xpro.2025.103931.
5
The metabolic costs of meiotic drive.
Proc Biol Sci. 2025 Jul;292(2050):20250779. doi: 10.1098/rspb.2025.0779. Epub 2025 Jul 2.
6
Dietary salt induces taste desensitization via receptor internalization in Drosophila in a sexually dimorphic manner.
Mol Cells. 2025 Aug;48(8):100242. doi: 10.1016/j.mocell.2025.100242. Epub 2025 Jun 18.
7
Gut microbe-derived lactic acid optimizes host energy metabolism during starvation.
bioRxiv. 2025 May 28:2025.05.27.656452. doi: 10.1101/2025.05.27.656452.
10
The neurotoxicity of Paraquat and its degradation products on drosophila melanogaster.
Sci Rep. 2025 May 12;15(1):16447. doi: 10.1038/s41598-025-86413-0.

本文引用的文献

1
Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms.
Cell. 2006 Oct 6;127(1):199-211. doi: 10.1016/j.cell.2006.09.010.
2
Waking experience affects sleep need in Drosophila.
Science. 2006 Sep 22;313(5794):1775-81. doi: 10.1126/science.1130408.
3
A sleep-promoting role for the Drosophila serotonin receptor 1A.
Curr Biol. 2006 Jun 6;16(11):1051-62. doi: 10.1016/j.cub.2006.04.032.
4
Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila.
Curr Biol. 2006 Apr 4;16(7):692-6. doi: 10.1016/j.cub.2006.02.064.
5
Imaging taste responses in the fly brain reveals a functional map of taste category and behavior.
Neuron. 2006 Jan 19;49(2):285-95. doi: 10.1016/j.neuron.2005.11.037.
6
Compensatory ingestion upon dietary restriction in Drosophila melanogaster.
Nat Methods. 2005 Nov;2(11):813-5. doi: 10.1038/nmeth798.
7
Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems.
Nat Neurosci. 2005 Oct;8(10):1350-5. doi: 10.1038/nn1540. Epub 2005 Sep 18.
8
Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain.
PLoS Biol. 2005 Sep;3(9):e305. doi: 10.1371/journal.pbio.0030305. Epub 2005 Aug 30.
9
Dopaminergic modulation of arousal in Drosophila.
Curr Biol. 2005 Jul 12;15(13):1165-75. doi: 10.1016/j.cub.2005.05.025.
10
Calories do not explain extension of life span by dietary restriction in Drosophila.
PLoS Biol. 2005 Jul;3(7):e223. doi: 10.1371/journal.pbio.0030223. Epub 2005 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验