Suppr超能文献

通过轴-轴突缝隙连接的网络中自发和自持振荡的机制。

Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions.

作者信息

Maex Reinoud, De Schutter Erik

机构信息

Laboratory of Theoretical Neurobiology, Universiteit Antwerpen, Belgium.

出版信息

Eur J Neurosci. 2007 Jun;25(11):3347-58. doi: 10.1111/j.1460-9568.2007.05593.x.

Abstract

Electrical coupling of clusters of neurons via axo-axonal gap junctions is a candidate mechanism underlying the ultra-fast (> 100 Hz) oscillations recorded in various in vitro and in vivo normal and pathological conditions [Traub et al. (1999)Neuroscience, 92, 407-426]. The poor characterization of axo-axonal gap junctions, however, limits experimental verification of this mechanism. We simulated networks of prototype multi-compartmental neurons in order to identify the parameters constraining the production and frequency of ultra-fast oscillations. Weak axo-axonal coupling was found to synchronize networks preferentially at the gamma-range frequency (30-100 Hz). Networks with strong axo-axonal coupling were able to produce 200 Hz oscillations, a finding we extended with several new observations. Ultra-fast oscillations arose spontaneously during dendritic excitation, i.e. in the absence of extrinsic axonal background spikes, as the spike trigger zone concomitantly shifted from soma to axon. The all-or-none oscillations could be transitory or self-sustained, and lasted longer in larger networks. They occurred more likely during low to modest soma firing rates, as strong afterhyperpolarizing currents tended to impair them. The rate of the rhythm was independent of network size and of the level of excitation, but inversely proportional to the distance of the junctions from the soma. As a matter of fact, the resulting axonal firing rate was the highest one at which antidromic spikes would not collide with spikes reflected from the soma. Taken together, the observed model dynamics lends further credibility to axo-axonal coupling as a mechanism of ultra-fast oscillations.

摘要

通过轴突 - 轴突缝隙连接实现的神经元簇电耦合,是在各种体外和体内正常及病理条件下记录到的超快速(>100 Hz)振荡的潜在机制[特劳布等人(1999年)《神经科学》,92卷,407 - 426页]。然而,轴突 - 轴突缝隙连接的特征描述不足,限制了对该机制的实验验证。我们模拟了多房室神经元原型网络,以确定限制超快速振荡产生和频率的参数。发现弱轴突 - 轴突耦合优先在γ频段频率(30 - 100 Hz)使网络同步。具有强轴突 - 轴突耦合的网络能够产生200 Hz振荡,我们通过一些新的观察扩展了这一发现。超快速振荡在树突兴奋期间自发出现,即在没有外在轴突背景尖峰的情况下,因为尖峰触发区同时从胞体转移到轴突。全或无振荡可以是短暂的或自持的,并且在较大网络中持续时间更长。它们在低至适度的胞体放电率期间更可能发生,因为强的超极化后电流往往会损害它们。节律的频率与网络大小和兴奋水平无关,但与连接点到胞体的距离成反比。事实上,由此产生的轴突放电率是逆行尖峰不会与从胞体反射的尖峰碰撞的最高放电率。综上所述,观察到的模型动力学进一步证明了轴突 - 轴突耦合作为超快速振荡机制的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验