Suppr超能文献

通过染色质免疫沉淀法对哺乳动物细胞中转录因子结合区域进行定位:基于芯片和测序技术的比较

Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies.

作者信息

Euskirchen Ghia M, Rozowsky Joel S, Wei Chia-Lin, Lee Wah Heng, Zhang Zhengdong D, Hartman Stephen, Emanuelsson Olof, Stolc Viktor, Weissman Sherman, Gerstein Mark B, Ruan Yijun, Snyder Michael

机构信息

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.

出版信息

Genome Res. 2007 Jun;17(6):898-909. doi: 10.1101/gr.5583007.

Abstract

Recent progress in mapping transcription factor (TF) binding regions can largely be credited to chromatin immunoprecipitation (ChIP) technologies. We compared strategies for mapping TF binding regions in mammalian cells using two different ChIP schemes: ChIP with DNA microarray analysis (ChIP-chip) and ChIP with DNA sequencing (ChIP-PET). We first investigated parameters central to obtaining robust ChIP-chip data sets by analyzing STAT1 targets in the ENCODE regions of the human genome, and then compared ChIP-chip to ChIP-PET. We devised methods for scoring and comparing results among various tiling arrays and examined parameters such as DNA microarray format, oligonucleotide length, hybridization conditions, and the use of competitor Cot-1 DNA. The best performance was achieved with high-density oligonucleotide arrays, oligonucleotides >/=50 bases (b), the presence of competitor Cot-1 DNA and hybridizations conducted in microfluidics stations. When target identification was evaluated as a function of array number, 80%-86% of targets were identified with three or more arrays. Comparison of ChIP-chip with ChIP-PET revealed strong agreement for the highest ranked targets with less overlap for the low ranked targets. With advantages and disadvantages unique to each approach, we found that ChIP-chip and ChIP-PET are frequently complementary in their relative abilities to detect STAT1 targets for the lower ranked targets; each method detected validated targets that were missed by the other method. The most comprehensive list of STAT1 binding regions is obtained by merging results from ChIP-chip and ChIP-sequencing. Overall, this study provides information for robust identification, scoring, and validation of TF targets using ChIP-based technologies.

摘要

转录因子(TF)结合区域图谱绘制的最新进展在很大程度上归功于染色质免疫沉淀(ChIP)技术。我们使用两种不同的ChIP方案比较了在哺乳动物细胞中绘制TF结合区域的策略:基于DNA微阵列分析的ChIP(ChIP-chip)和基于DNA测序的ChIP(ChIP-PET)。我们首先通过分析人类基因组ENCODE区域中的STAT1靶点,研究了获得可靠ChIP-chip数据集的核心参数,然后将ChIP-chip与ChIP-PET进行比较。我们设计了在各种平铺阵列之间评分和比较结果的方法,并研究了诸如DNA微阵列格式、寡核苷酸长度、杂交条件以及竞争剂Cot-1 DNA的使用等参数。使用高密度寡核苷酸阵列、长度≥50个碱基(b)的寡核苷酸、存在竞争剂Cot-1 DNA以及在微流控平台中进行杂交时,可实现最佳性能。当将靶点识别作为阵列数量的函数进行评估时,80%-86%的靶点可通过三个或更多阵列识别出来。ChIP-chip与ChIP-PET的比较显示,对于排名最高的靶点有很强的一致性,而对于排名较低的靶点重叠较少。由于每种方法都有其独特的优缺点,我们发现ChIP-chip和ChIP-PET在检测排名较低靶点的STAT1靶点的相对能力方面经常具有互补性;每种方法都检测到了另一种方法遗漏的经过验证的靶点。通过合并ChIP-chip和ChIP测序的结果可获得最全面的STAT1结合区域列表。总体而言,本研究为使用基于ChIP的技术可靠地识别、评分和验证TF靶点提供了信息。

相似文献

5
Integrative analysis of ChIP-chip and ChIP-seq dataset.
Methods Mol Biol. 2013;1067:105-24. doi: 10.1007/978-1-62703-607-8_8.
6
Multiple testing methods for ChIP-Chip high density oligonucleotide array data.
J Comput Biol. 2006 Apr;13(3):579-613. doi: 10.1089/cmb.2006.13.579.
8
Global changes in STAT target selection and transcription regulation upon interferon treatments.
Genes Dev. 2005 Dec 15;19(24):2953-68. doi: 10.1101/gad.1371305. Epub 2005 Nov 30.
10
Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data.
PLoS Comput Biol. 2011 Jul;7(7):e1002111. doi: 10.1371/journal.pcbi.1002111. Epub 2011 Jul 14.

引用本文的文献

1
Optimized ChIP-exo for mammalian cells and patterned sequencing flow cells.
bioRxiv. 2025 Aug 20:2025.08.14.670389. doi: 10.1101/2025.08.14.670389.
2
The significance of PAX5 in Merkel cell carcinoma.
J Pathol. 2025 May;266(1):81-94. doi: 10.1002/path.6410. Epub 2025 Mar 4.
3
Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4.
Nucleic Acids Res. 2024 Apr 24;52(7):3607-3622. doi: 10.1093/nar/gkae025.
4
Research Topics of the Bioinformatics of Gene Regulation.
Int J Mol Sci. 2023 May 15;24(10):8774. doi: 10.3390/ijms24108774.
5
Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders.
Brain Commun. 2022 Jun 21;4(4):fcac162. doi: 10.1093/braincomms/fcac162. eCollection 2022.
6
Identification of phenotype-specific networks from paired gene expression-cell shape imaging data.
Genome Res. 2022 Apr;32(4):750-765. doi: 10.1101/gr.276059.121. Epub 2022 Feb 23.
8
Potential impact and mechanism of Long Non-coding RNAs on cancer and associated T cells.
J Cancer. 2021 Jun 11;12(16):4873-4882. doi: 10.7150/jca.58859. eCollection 2021.

本文引用的文献

2
ChIP-chip comes of age for genome-wide functional analysis.
Cancer Res. 2006 Jul 15;66(14):6899-902. doi: 10.1158/0008-5472.CAN-06-0276.
3
Control of developmental regulators by Polycomb in human embryonic stem cells.
Cell. 2006 Apr 21;125(2):301-13. doi: 10.1016/j.cell.2006.02.043.
4
Gene sequencing. The race for the $1000 genome.
Science. 2006 Mar 17;311(5767):1544-6. doi: 10.1126/science.311.5767.1544.
5
High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4534-9. doi: 10.1073/pnas.0511340103. Epub 2006 Mar 14.
6
The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.
Nat Genet. 2006 Apr;38(4):431-40. doi: 10.1038/ng1760. Epub 2006 Mar 5.
7
A global map of p53 transcription-factor binding sites in the human genome.
Cell. 2006 Jan 13;124(1):207-19. doi: 10.1016/j.cell.2005.10.043.
8
Design optimization methods for genomic DNA tiling arrays.
Genome Res. 2006 Feb;16(2):271-81. doi: 10.1101/gr.4452906. Epub 2005 Dec 19.
9
Global changes in STAT target selection and transcription regulation upon interferon treatments.
Genes Dev. 2005 Dec 15;19(24):2953-68. doi: 10.1101/gad.1371305. Epub 2005 Nov 30.
10
Core transcriptional regulatory circuitry in human embryonic stem cells.
Cell. 2005 Sep 23;122(6):947-56. doi: 10.1016/j.cell.2005.08.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验