Suppr超能文献

HERG通道抑制剂的状态依赖性解离

State dependent dissociation of HERG channel inhibitors.

作者信息

Stork D, Timin E N, Berjukow S, Huber C, Hohaus A, Auer M, Hering S

机构信息

Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria.

出版信息

Br J Pharmacol. 2007 Aug;151(8):1368-76. doi: 10.1038/sj.bjp.0707356. Epub 2007 Jun 25.

Abstract

BACKGROUND AND PURPOSE

Inhibition of HERG channels prolongs the ventricular action potential and the QT interval with the risk of torsade de pointes arrhythmias and sudden cardiac death. Many drugs induce greater inhibition of HERG channels when the cell membrane is depolarized frequently. The dependence of inhibition on the pulsing rate may yield different IC(50) values at different frequencies and thus affect the quantification of HERG channel block. We systematically compared the kinetics of HERG channel inhibition and recovery from block by 8 blockers at different frequencies.

EXPERIMENTAL APPROACH

HERG channels were expressed heterologously in Xenopus oocytes and currents were measured with the two-electrode voltage clamp technique.

KEY RESULTS

Frequency-dependent block was observed for amiodarone, cisapride, droperidol and haloperidol (group 1) whereas bepridil, domperidone, E-4031 and terfenadine (group 2) induced similar pulse-dependent block at all frequencies. With the group 1 compounds, HERG channels recovered from block in the presence of drug (recovery being voltage-dependent). No substantial recovery from block was observed with the second group of compounds. Washing out of bepridil, domperidone, E-4031 and terfenadine was substantially augmented by frequent pulsing. Mutation D540K in the HERG channel (which exhibits reopening at negative voltages) facilitated recovery from block by these compounds at -140 mV.

CONCLUSION AND IMPLICATIONS

Drug molecules dissociate at different rates from open and closed HERG channels ('use-dependent' dissociation). Our data suggest that apparently 'trapped' drugs (group 2) dissociated from the open channel state whereas group 1 compounds dissociated from open and resting states.

摘要

背景与目的

抑制HERG通道会延长心室动作电位和QT间期,存在发生尖端扭转型室性心动过速和心源性猝死的风险。当细胞膜频繁去极化时,许多药物对HERG通道的抑制作用会增强。抑制作用对脉冲频率的依赖性可能会在不同频率下产生不同的半数抑制浓度(IC50)值,从而影响HERG通道阻滞的定量分析。我们系统地比较了8种阻滞剂在不同频率下对HERG通道抑制和从阻滞中恢复的动力学。

实验方法

HERG通道在非洲爪蟾卵母细胞中异源表达,采用双电极电压钳技术测量电流。

主要结果

观察到胺碘酮、西沙必利、氟哌利多和氟哌啶醇(第1组)存在频率依赖性阻滞,而苄普地尔、多潘立酮、E-4031和特非那定(第2组)在所有频率下均诱导相似的脉冲依赖性阻滞。对于第1组化合物,HERG通道在有药物存在的情况下从阻滞中恢复(恢复具有电压依赖性)。第2组化合物未观察到明显的从阻滞中恢复的情况。频繁脉冲可显著增强苄普地尔、多潘立酮、E-4031和特非那定的洗脱。HERG通道中的D540K突变(在负电压下表现出重新开放)促进了这些化合物在-140 mV时从阻滞中恢复。

结论与启示

药物分子从开放和关闭的HERG通道以不同速率解离(“使用依赖性”解离)。我们的数据表明,明显“被困”的药物(第2组)从开放通道状态解离,而第1组化合物从开放和静息状态解离。

相似文献

1
State dependent dissociation of HERG channel inhibitors.
Br J Pharmacol. 2007 Aug;151(8):1368-76. doi: 10.1038/sj.bjp.0707356. Epub 2007 Jun 25.
2
Block effect of capsaicin on hERG potassium currents is enhanced by S6 mutation at Y652.
Eur J Pharmacol. 2010 Mar 25;630(1-3):1-9. doi: 10.1016/j.ejphar.2009.11.009. Epub 2009 Nov 10.
3
Block of hERG K+ channel and prolongation of action potential duration by fluphenazine at submicromolar concentration.
Eur J Pharmacol. 2013 Feb 28;702(1-3):165-73. doi: 10.1016/j.ejphar.2013.01.039. Epub 2013 Feb 6.
5
Inhibition of the HERG channel by droperidol depends on channel gating and involves the S6 residue F656.
Anesth Analg. 2008 Apr;106(4):1161-70, table of contents. doi: 10.1213/ane.0b013e3181684974.
6
Inhibitory effects of coronary vasodilator papaverine on heterologously-expressed HERG currents in Xenopus oocytes.
Acta Pharmacol Sin. 2007 Apr;28(4):503-10. doi: 10.1111/j.1745-7254.2007.00507.x.
8
Blockade of HERG human K+ channel and IKr of guinea pig cardiomyocytes by prochlorperazine.
Eur J Pharmacol. 2006 Aug 21;544(1-3):82-90. doi: 10.1016/j.ejphar.2006.06.009. Epub 2006 Jul 24.
9
Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37 degrees C: Cisapride versus dofetilide.
J Pharmacol Toxicol Methods. 2010 Mar-Apr;61(2):178-91. doi: 10.1016/j.vascn.2010.02.007. Epub 2010 Feb 19.
10
The action of the novel gastrointestinal prokinetic prucalopride on the HERG K+ channel and the common T897 polymorph.
Eur J Pharmacol. 2007 Jan 12;554(2-3):98-105. doi: 10.1016/j.ejphar.2006.10.019. Epub 2006 Oct 18.

引用本文的文献

2
Harnessing AlphaFold to reveal hERG channel conformational state secrets.
Elife. 2025 Jul 14;13:RP104901. doi: 10.7554/eLife.104901.
3
Optimizing experimental designs for model selection of ion channel drug-binding mechanisms.
Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240227. doi: 10.1098/rsta.2024.0227.
4
Harnessing AlphaFold to reveal hERG channel conformational state secrets.
bioRxiv. 2024 Oct 24:2024.01.27.577468. doi: 10.1101/2024.01.27.577468.
5
Structural modeling of hERG channel-drug interactions using Rosetta.
Front Pharmacol. 2023 Nov 14;14:1244166. doi: 10.3389/fphar.2023.1244166. eCollection 2023.
7
Importance of modelling hERG binding in predicting drug-induced action potential prolongations for drug safety assessment.
Front Pharmacol. 2023 Mar 20;14:1110555. doi: 10.3389/fphar.2023.1110555. eCollection 2023.
8
Metabolic and electrolyte abnormalities as risk factors in drug-induced long QT syndrome.
Biophys Rev. 2022 Jan 27;14(1):353-367. doi: 10.1007/s12551-022-00929-7. eCollection 2022 Feb.
9
Cardiac hERG K Channel as Safety and Pharmacological Target.
Handb Exp Pharmacol. 2021;267:139-166. doi: 10.1007/164_2021_455.
10
Influence of Kv11.1 (hERG1) K channel expression on DNA damage induced by the genotoxic agent methyl methanesulfonate.
Pflugers Arch. 2021 Feb;473(2):197-217. doi: 10.1007/s00424-021-02517-2. Epub 2021 Jan 15.

本文引用的文献

1
Automated fast perfusion of Xenopus oocytes for drug screening.
Pflugers Arch. 2006 Oct;453(1):117-23. doi: 10.1007/s00424-006-0125-y. Epub 2006 Sep 5.
2
Molecular determinants of HERG channel block.
Mol Pharmacol. 2006 May;69(5):1709-16. doi: 10.1124/mol.105.020990. Epub 2006 Feb 10.
3
Blockade of HERG cardiac K+ current by antifungal drug miconazole.
Br J Pharmacol. 2005 Mar;144(6):840-8. doi: 10.1038/sj.bjp.0706095.
4
Predicting drug-hERG channel interactions that cause acquired long QT syndrome.
Trends Pharmacol Sci. 2005 Mar;26(3):119-24. doi: 10.1016/j.tips.2005.01.003.
5
Inhibition of human ether-a-go-go-related gene K+ channel and IKr of guinea pig cardiomyocytes by antipsychotic drug trifluoperazine.
J Pharmacol Exp Ther. 2005 May;313(2):888-95. doi: 10.1124/jpet.104.080853. Epub 2005 Feb 18.
6
Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death.
Eur Heart J. 2005 Mar;26(6):590-7. doi: 10.1093/eurheartj/ehi092. Epub 2005 Jan 6.
8
Variability in the measurement of hERG potassium channel inhibition: effects of temperature and stimulus pattern.
J Pharmacol Toxicol Methods. 2004 Sep-Oct;50(2):93-101. doi: 10.1016/j.vascn.2004.06.003.
9
The low-potency, voltage-dependent HERG blocker propafenone--molecular determinants and drug trapping.
Mol Pharmacol. 2004 Nov;66(5):1201-12. doi: 10.1124/mol.104.001743. Epub 2004 Aug 12.
10
Comparison of kinetic properties of quinidine and dofetilide block of HERG channels.
Eur J Pharmacol. 2004 Jun 16;493(1-3):29-40. doi: 10.1016/j.ejphar.2004.04.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验