Suppr超能文献

用于糖蛋白折叠和降解的N-聚糖依赖性内质网质量控制因子的演变。

The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation.

作者信息

Banerjee Sulagna, Vishwanath Prashanth, Cui Jike, Kelleher Daniel J, Gilmore Reid, Robbins Phillips W, Samuelson John

机构信息

Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11676-81. doi: 10.1073/pnas.0704862104. Epub 2007 Jul 2.

Abstract

Asn-linked glycans (N-glycans) play important roles in the quality control (QC) of glycoprotein folding in the endoplasmic reticulum (ER) lumen and in ER-associated degradation (ERAD) of proteins by cytosolic proteasomes. A UDP-Glc:glycoprotein glucosyltransferase glucosylates N-glycans of misfolded proteins, which are then bound and refolded by calreticulin and/or calnexin in association with a protein disulfide isomerase. Alternatively, an alpha-1,2-mannosidase (Mns1) and mannosidase-like proteins (ER degradation-enhancing alpha-mannosidase-like proteins 1, 2, and 3) are part of a process that results in the dislocation of misfolded glycoproteins into the cytosol, where proteins are degraded in the proteasome. Recently we found that numerous protists and fungi contain 0-11 sugars in their N-glycan precursors versus 14 sugars in those of animals, plants, fungi, and Dictyostelium. Our goal here was to determine what effect N-glycan precursor diversity has on N-glycan-dependent QC systems of glycoprotein folding and ERAD. N-glycan-dependent QC of folding (UDP-Glc:glycoprotein glucosyltransferase, calreticulin, and/or calnexin) was present and active in some but not all protists containing at least five mannose residues in their N-glycans and was absent in protists lacking Man. In contrast, N-glycan-dependent ERAD appeared to be absent from the majority of protists. However, Trypanosoma and Trichomonas genomes predicted ER degradation-enhancing alpha-mannosidase-like protein and Mns1 orthologs, respectively, each of which had alpha-mannosidase activity in vitro. Phylogenetic analyses suggested that the diversity of N-glycan-dependent QC of glycoprotein folding (and possibly that of ERAD) was best explained by secondary loss. We conclude that N-glycan precursor length has profound effects on N-glycan-dependent QC of glycoprotein folding and ERAD.

摘要

天冬酰胺连接的聚糖(N-聚糖)在内质网(ER)腔中糖蛋白折叠的质量控制(QC)以及胞质蛋白酶体对蛋白质的内质网相关降解(ERAD)过程中发挥着重要作用。一种UDP-葡萄糖:糖蛋白葡糖基转移酶会将错误折叠蛋白质的N-聚糖进行葡糖基化,随后这些聚糖会与蛋白质二硫键异构酶一起,被钙网蛋白和/或钙连蛋白结合并重新折叠。另外,一种α-1,2-甘露糖苷酶(Mns1)和甘露糖苷酶样蛋白(内质网降解增强型α-甘露糖苷酶样蛋白1、2和3)参与了一个过程,该过程会导致错误折叠的糖蛋白错位进入胞质溶胶,在那里蛋白质会被蛋白酶体降解。最近我们发现,许多原生生物和真菌的N-聚糖前体含有0至11个糖,而动物、植物、真菌和盘基网柄菌的N-聚糖前体含有14个糖。我们在此的目标是确定N-聚糖前体多样性对糖蛋白折叠和ERAD的N-聚糖依赖性质量控制系统有何影响。在一些但并非所有N-聚糖中至少含有五个甘露糖残基的原生生物中,存在并活跃着N-聚糖依赖性的折叠质量控制(UDP-葡萄糖:糖蛋白葡糖基转移酶、钙网蛋白和/或钙连蛋白),而在缺乏甘露糖的原生生物中则不存在。相比之下,大多数原生生物似乎不存在N-聚糖依赖性ERAD。然而,锥虫和滴虫的基因组分别预测有内质网降解增强型α-甘露糖苷酶样蛋白和Mns1直系同源物,它们在体外均具有α-甘露糖苷酶活性。系统发育分析表明,糖蛋白折叠的N-聚糖依赖性质量控制(可能还有ERAD的质量控制)的多样性最好用次生损失来解释。我们得出结论,N-聚糖前体长度对糖蛋白折叠和ERAD的N-聚糖依赖性质量控制有深远影响。

相似文献

1
The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation.
Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11676-81. doi: 10.1073/pnas.0704862104. Epub 2007 Jul 2.
2
Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation.
Semin Cell Dev Biol. 2015 May;41:121-8. doi: 10.1016/j.semcdb.2014.11.008. Epub 2014 Dec 2.
6
Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9.
Histochem Cell Biol. 2017 Feb;147(2):269-284. doi: 10.1007/s00418-016-1513-9. Epub 2016 Nov 1.
7
ER-resident protein 46 (ERp46) triggers the mannose-trimming activity of ER degradation-enhancing α-mannosidase-like protein 3 (EDEM3).
J Biol Chem. 2018 Jul 6;293(27):10663-10674. doi: 10.1074/jbc.RA118.003129. Epub 2018 May 21.
9
Mannosidase IA is in Quality Control Vesicles and Participates in Glycoprotein Targeting to ERAD.
J Mol Biol. 2016 Aug 14;428(16):3194-3205. doi: 10.1016/j.jmb.2016.04.020. Epub 2016 Apr 21.
10
Glycan regulation of ER-associated degradation through compartmentalization.
Semin Cell Dev Biol. 2015 May;41:99-109. doi: 10.1016/j.semcdb.2014.11.006. Epub 2014 Nov 24.

引用本文的文献

1
N-Glycosylation-The Behind-the-Scenes 'Manipulative Hand' of Plant Pathogen Invasiveness.
Mol Plant Pathol. 2025 Jul;26(7):e70123. doi: 10.1111/mpp.70123.
4
Hexosamine biosynthesis and related pathways, protein N-glycosylation and O-GlcNAcylation: their interconnection and role in plants.
Front Plant Sci. 2024 Mar 6;15:1349064. doi: 10.3389/fpls.2024.1349064. eCollection 2024.
5
Evolution and phylogenetic distribution of endo-α-mannosidase.
Glycobiology. 2023 Oct 29;33(9):687-699. doi: 10.1093/glycob/cwad041.
6
Glycosylation Analysis of Feline Small Intestine Following Infection.
Animals (Basel). 2022 Oct 20;12(20):2858. doi: 10.3390/ani12202858.
7
Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins.
Adv Neurobiol. 2023;29:65-93. doi: 10.1007/978-3-031-12390-0_3.
9
N-Glycosylation at Asn291 Stabilizes TIM-4 and Promotes the Metastasis of NSCLC.
Front Oncol. 2022 Mar 31;12:730530. doi: 10.3389/fonc.2022.730530. eCollection 2022.
10
Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective.
Mol Cell Proteomics. 2021;20:100024. doi: 10.1074/mcp.R120.002263. Epub 2021 Jan 6.

本文引用的文献

1
Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation of folding-defective glycoproteins.
FEBS Lett. 2007 Jul 31;581(19):3658-64. doi: 10.1016/j.febslet.2007.04.070. Epub 2007 May 4.
2
N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control.
Curr Opin Struct Biol. 2006 Oct;16(5):592-9. doi: 10.1016/j.sbi.2006.08.005. Epub 2006 Aug 30.
3
EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming.
J Biol Chem. 2006 Apr 7;281(14):9650-8. doi: 10.1074/jbc.M512191200. Epub 2006 Jan 23.
4
Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD.
Mol Cell. 2005 Sep 16;19(6):765-75. doi: 10.1016/j.molcel.2005.08.015.
6
A window of opportunity: timing protein degradation by trimming of sugars and ubiquitins.
Trends Biochem Sci. 2005 Jun;30(6):297-303. doi: 10.1016/j.tibs.2005.04.010.
7
The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases.
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1548-53. doi: 10.1073/pnas.0409460102. Epub 2005 Jan 21.
8
A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation.
J Biol Chem. 2005 Jan 28;280(4):2424-8. doi: 10.1074/jbc.C400534200. Epub 2004 Dec 3.
9
A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins.
FEBS Lett. 2004 Nov 19;577(3):422-6. doi: 10.1016/j.febslet.2004.10.039.
10
Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins.
Glycobiology. 2005 Apr;15(4):421-36. doi: 10.1093/glycob/cwi014. Epub 2004 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验