Czepas J, Koceva-Chyła A, Gwoździński K, Jóźwiak Z
Department of Molecular Biophysics, University of Łódź, Łódź, Poland.
Cell Biol Toxicol. 2008 Jan;24(1):101-12. doi: 10.1007/s10565-007-9020-3. Epub 2007 Jul 3.
The piperidine nitroxides Tempamine and Tempace have been studied for their effect on doxorubicin (DOX) and hydrogen peroxide (H(2)O(2)) cytotoxicity in immortalized B14 cells, a model for neoplastic phenotype. The significance for nitroxide performance of the substituent in position 4 of the piperidine ring was evaluated. The cells were exposed to DOX/H(2)O(2) alone or in combination with the nitroxides Tempamine or Tempace. Two other piperidine nitroxides, Tempo and Tempol, were used for comparison. All the nitroxides except Tempamine modestly reduced DOX cytotoxicity. Tempamine evoked a biphasic response: at concentrations lower than 200 micromol/L the nitroxide decreased DOX cytotoxicity, while at concentrations higher than 200 micromol/L, it enhanced DOX cytotoxicity. In contrast to Tempo and Tempol, Tempamine and Tempace ameliorated hydrogen peroxide cytotoxicity, but none of the nitroxides influenced TBARS stimulated by hydrogen peroxide. The cytoprotective effect of Tempace, Tempo and Tempol in DOX-treated cells correlated with the inhibition of DOX-induced lipid peroxidation. The bioreduction rates of the investigated nitroxides differed significantly and were variously affected by DOX depending on the nitroxide substituent. In combination with DOX, Tempo and Tempol were reduced significantly more slowly, while no influence of DOX on Tempamine and Tempace bioreduction was observed. Our results suggest that the structure of the 4-position substituent is an important factor for biological activity of piperidine nitroxides. Among the investigated nitroxides, Tempace displayed the best protective properties in vitro but Tempamine was the only nitroxide that potentiated cytotoxicity of DOX and did not influence DOX-induced lipid peroxidation. However, this nitroxide showed different performance depending on its concentration and conditions of oxidative stress.
已对哌啶氮氧化物Tempamine和Tempace对永生化B14细胞(一种肿瘤表型模型)中阿霉素(DOX)和过氧化氢(H₂O₂)细胞毒性的影响进行了研究。评估了哌啶环4位取代基对氮氧化物性能的重要性。将细胞单独暴露于DOX/H₂O₂或与氮氧化物Tempamine或Tempace联合暴露。使用另外两种哌啶氮氧化物Tempo和Tempol作为对照。除Tempamine外,所有氮氧化物均适度降低了DOX的细胞毒性。Tempamine引起双相反应:在浓度低于200 μmol/L时,该氮氧化物降低DOX的细胞毒性,而在浓度高于200 μmol/L时,它增强DOX的细胞毒性。与Tempo和Tempol不同,Tempamine和Tempace改善了过氧化氢的细胞毒性,但没有一种氮氧化物影响过氧化氢刺激的硫代巴比妥酸反应物(TBARS)。Tempace、Tempo和Tempol在DOX处理细胞中的细胞保护作用与抑制DOX诱导的脂质过氧化有关。所研究的氮氧化物的生物还原速率差异显著,并且根据氮氧化物取代基的不同受到DOX的不同影响。与DOX联合使用时,Tempo和Tempol的还原明显更慢,而未观察到DOX对Tempamine和Tempace生物还原的影响。我们的结果表明,4位取代基的结构是哌啶氮氧化物生物活性的重要因素。在所研究的氮氧化物中,Tempace在体外表现出最佳的保护特性,但Tempamine是唯一增强DOX细胞毒性且不影响DOX诱导的脂质过氧化的氮氧化物。然而,这种氮氧化物根据其浓度和氧化应激条件表现出不同的性能。