Suppr超能文献

敲入小鼠中基于 Prestin 的外毛细胞电运动似乎并未调节基于纤毛的放大器的工作点。

Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier.

作者信息

Gao Jiangang, Wang Xiang, Wu Xudong, Aguinaga Sal, Huynh Kristin, Jia Shuping, Matsuda Keiji, Patel Manish, Zheng Jing, Cheatham Maryann, He David Z, Dallos Peter, Zuo Jian

机构信息

Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12542-7. doi: 10.1073/pnas.0700356104. Epub 2007 Jul 18.

Abstract

The remarkable sensitivity and frequency selectivity of the mammalian cochlea is attributed to a unique amplification process that resides in outer hair cells (OHCs). Although the mammalian-specific somatic motility is considered a substrate of cochlear amplification, it has also been proposed that somatic motility in mammals simply acts as an operating-point adjustment for the ubiquitous stereocilia-based amplifier. To address this issue, we created a mouse model in which a mutation (C1) was introduced into the OHC motor protein prestin, based on previous results in transfected cells. In C1/C1 knockin mice, localization of C1-prestin, as well as the length and number of OHCs, were all normal. In OHCs isolated from C1/C1 mice, nonlinear capacitance and somatic motility were both shifted toward hyperpolarization, so that, compared with WT controls, the amplitude of cycle-by-cycle (alternating, or AC) somatic motility remained the same, but the unidirectional (DC) component reversed polarity near the OHC's presumed in vivo resting membrane potential. No physiological defects in cochlear sensitivity or frequency selectivity were detected in C1/C1 or C1/+ mice. Hence, our results do not support the idea that OHC somatic motility adjusts the operating point of a stereocilia-based amplifier. However, they are consistent with the notion that the AC component of OHC somatic motility plays a dominant role in mammalian cochlear amplification.

摘要

哺乳动物耳蜗卓越的灵敏度和频率选择性归因于外毛细胞(OHC)中存在的一种独特放大过程。尽管哺乳动物特有的体细胞运动性被认为是耳蜗放大的基础,但也有人提出,哺乳动物中的体细胞运动性仅仅是对普遍存在的基于静纤毛的放大器进行工作点调整。为了解决这个问题,我们基于之前在转染细胞中的研究结果,创建了一种小鼠模型,其中OHC运动蛋白prestin中引入了一个突变(C1)。在C1/C1基因敲入小鼠中,C1-prestin的定位以及OHC的长度和数量均正常。在从C1/C1小鼠分离出的OHC中,非线性电容和体细胞运动性均向超极化方向偏移,因此,与野生型对照相比,逐周期(交变,或AC)体细胞运动性的幅度保持不变,但单向(DC)成分在OHC假定的体内静息膜电位附近反转了极性。在C1/C1或C1/+小鼠中未检测到耳蜗灵敏度或频率选择性方面的生理缺陷。因此,我们的结果不支持OHC体细胞运动性调整基于静纤毛的放大器工作点这一观点。然而,它们与OHC体细胞运动性的AC成分在哺乳动物耳蜗放大中起主导作用这一观点一致。

相似文献

1
Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier.
Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12542-7. doi: 10.1073/pnas.0700356104. Epub 2007 Jul 18.
2
The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity.
Acta Neuropathol Commun. 2018 Sep 24;6(1):98. doi: 10.1186/s40478-018-0599-9.
3
Prestin and electromotility may serve multiple roles in cochlear outer hair cells.
Hear Res. 2022 Sep 15;423:108428. doi: 10.1016/j.heares.2021.108428. Epub 2021 Dec 26.
4
Functional prestin transduction of immature outer hair cells from normal and prestin-null mice.
J Assoc Res Otolaryngol. 2008 Sep;9(3):307-20. doi: 10.1007/s10162-008-0121-3. Epub 2008 May 28.
6
Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in PrestinV499G/Y501H Knockin Mice.
PLoS One. 2015 Dec 18;10(12):e0145428. doi: 10.1371/journal.pone.0145428. eCollection 2015.
7
Prestin, the motor protein of outer hair cells.
Audiol Neurootol. 2002 Jan-Feb;7(1):9-12. doi: 10.1159/000046855.
9
Activity-dependent regulation of prestin expression in mouse outer hair cells.
J Neurophysiol. 2015 Jun 1;113(10):3531-42. doi: 10.1152/jn.00869.2014. Epub 2015 Mar 25.
10
Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification.
Neuron. 2008 May 8;58(3):333-9. doi: 10.1016/j.neuron.2008.02.028.

引用本文的文献

1
Hearing Loss and Audiogenic Seizures Induced by Hypofunctional Prestin Variants.
J Neurosci. 2025 Jul 23;45(30):e0922252025. doi: 10.1523/JNEUROSCI.0922-25.2025.
2
Chloride binding does not influence prestin motor speed at very high frequencies in the mouse outer hair cell.
Structure. 2025 Aug 7;33(8):1417-1424.e3. doi: 10.1016/j.str.2025.04.019. Epub 2025 May 21.
3
The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss.
J Physiol. 2024 Mar;602(6):1199-1210. doi: 10.1113/JP285599. Epub 2024 Mar 3.
5
3D Ultrastructure of the Cochlear Outer Hair Cell Lateral Wall Revealed By Electron Tomography.
Front Cell Neurosci. 2019 Dec 20;13:560. doi: 10.3389/fncel.2019.00560. eCollection 2019.
6
Transcriptomic Analyses of Inner Ear Sensory Epithelia in Zebrafish.
Anat Rec (Hoboken). 2020 Mar;303(3):527-543. doi: 10.1002/ar.24331. Epub 2019 Dec 28.
7
Deletion of exons 17 and 18 in prestin's STAS domain results in loss of function.
Sci Rep. 2019 May 3;9(1):6874. doi: 10.1038/s41598-019-43343-y.
8
9
Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in PrestinV499G/Y501H Knockin Mice.
PLoS One. 2015 Dec 18;10(12):e0145428. doi: 10.1371/journal.pone.0145428. eCollection 2015.
10
Loss of lysyl oxidase-like 3 causes cleft palate and spinal deformity in mice.
Hum Mol Genet. 2015 Nov 1;24(21):6174-85. doi: 10.1093/hmg/ddv333. Epub 2015 Aug 24.

本文引用的文献

1
Mechanoelectric transduction of adult inner hair cells.
J Neurosci. 2007 Jan 31;27(5):1006-14. doi: 10.1523/JNEUROSCI.5452-06.2007.
2
Active hair bundle movements in auditory hair cells.
J Physiol. 2006 Oct 1;576(Pt 1):29-36. doi: 10.1113/jphysiol.2006.115949. Epub 2006 Aug 3.
3
Cochlear transducer operating point adaptation.
J Acoust Soc Am. 2006 Apr;119(4):2232-41. doi: 10.1121/1.2173517.
4
Control of mammalian cochlear amplification by chloride anions.
J Neurosci. 2006 Apr 12;26(15):3992-8. doi: 10.1523/JNEUROSCI.4548-05.2006.
5
Fast cochlear amplification with slow outer hair cells.
Hear Res. 2006 Apr;214(1-2):45-67. doi: 10.1016/j.heares.2006.01.018. Epub 2006 Apr 17.
6
Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms.
J Neurosci. 2006 Mar 8;26(10):2757-66. doi: 10.1523/JNEUROSCI.3808-05.2006.
7
Hair-cell mechanotransduction and cochlear amplification.
Neuron. 2005 Nov 3;48(3):403-15. doi: 10.1016/j.neuron.2005.10.017.
8
Motility-associated hair-bundle motion in mammalian outer hair cells.
Nat Neurosci. 2005 Aug;8(8):1028-34. doi: 10.1038/nn1509. Epub 2005 Jul 24.
9
Force generation by mammalian hair bundles supports a role in cochlear amplification.
Nature. 2005 Feb 24;433(7028):880-3. doi: 10.1038/nature03367. Epub 2005 Feb 6.
10
Effects of cyclic nucleotides on the function of prestin.
J Physiol. 2005 Mar 1;563(Pt 2):483-96. doi: 10.1113/jphysiol.2004.078857. Epub 2005 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验