Suppr超能文献

评估用于设计对铜绿假单胞菌具有增强活性的抗菌肽模型的不同描述符。

Evaluating different descriptors for model design of antimicrobial peptides with enhanced activity toward P. aeruginosa.

作者信息

Jenssen Håvard, Lejon Tore, Hilpert Kai, Fjell Christopher D, Cherkasov Artem, Hancock Robert E W

机构信息

Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

Chem Biol Drug Des. 2007 Aug;70(2):134-42. doi: 10.1111/j.1747-0285.2007.00543.x.

Abstract

The number of isolated drug-resistant pathogenic microbes has increased drastically over the past decades, demonstrating an urgent need for new therapeutic interventions. Antimicrobial peptides have for a long time been looked upon as an interesting template for drug optimization. However, the process of optimizing peptide antimicrobial activity and specificity, using large peptide libraries is both tedious and expensive. Here, we describe the construction of a mathematical model for prediction, prior to synthesis, of peptide antibacterial activity toward Pseudomonas aeruginosa. By use of novel descriptors quantifying the contact energy between neighboring amino acids in addition to a set of inductive and conventional quantitative structure-activity relationship descriptors, we are able to model the peptides antibacterial activity. Cross-correlation and optimization of the implemented descriptor values have enabled us to build a model (Bac2a- #2) that was able to correctly predict the activity of 84% of the tested peptides, within a twofold deviation window of the corresponding IC50 values, measured earlier. The predictive power, is an average of 10 submodels, each predicting the activity of 20 randomly excluded peptides, with a predictive success of 16.7 +/- 1.6 peptides. The model has also been proven significantly more accurate than a simpler model (Bac2a- #1), where the inductive and conventional quantitative structure-activity relationship descriptors were excluded.

摘要

在过去几十年中,分离出的耐药致病微生物数量急剧增加,这表明迫切需要新的治疗干预措施。长期以来,抗菌肽一直被视为药物优化的一个有趣模板。然而,使用大型肽库来优化肽的抗菌活性和特异性的过程既繁琐又昂贵。在此,我们描述了一种数学模型的构建,用于在合成前预测肽对铜绿假单胞菌的抗菌活性。除了一组归纳性和传统的定量构效关系描述符外,通过使用量化相邻氨基酸之间接触能的新型描述符,我们能够对肽的抗菌活性进行建模。所实施描述符值的互相关和优化使我们能够构建一个模型(Bac2a - #2),该模型能够在早期测量的相应IC50值的两倍偏差窗口内正确预测84%的测试肽的活性。预测能力是10个子模型的平均值,每个子模型预测20个随机排除的肽的活性,预测成功率为16.7±1.6个肽。该模型也已被证明比一个更简单的模型(Bac2a - #1)显著更准确,在Bac2a - #1中排除了归纳性和传统的定量构效关系描述符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验