Suppr超能文献

GLN3编码白色念珠菌氮代谢和毒力的全局调节因子。

GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans.

作者信息

Liao Wei-Li, Ramón Ana M, Fonzi William A

机构信息

Department of Microbiology & Immunology, Georgetown University, 3900 Reservoir Road N.W., Washington, DC 20057-2197, USA.

出版信息

Fungal Genet Biol. 2008 Apr;45(4):514-26. doi: 10.1016/j.fgb.2007.08.006. Epub 2007 Sep 7.

Abstract

The function of GLN3, a GATA factor encoding gene, in nitrogen metabolism of Candida albicans was examined. GLN3 null mutants had reduced growth rates on multiple nitrogen sources. More severe growth defects were observed in mutants lacking both GLN3 and GAT1, a second GATA factor gene. GLN3 was an activator of two genes involved in ammonium assimilation, GDH3, encoding NADP-dependent glutamate dehydrogenase, and MEP2, which encodes an ammonium permease. GAT1 contributed to MEP2 expression, but not that of GDH3. A putative general amino acid permease gene, GAP2, was also activated by both GLN3 and GAT1, but activation by GLN3 was nitrogen source dependent. GLN3 was constitutively expressed, but GAT1 expression varied with nitrogen source and was reduced 2- to 3-fold in gln3 mutants. Both gln3 and gat1 mutants exhibited reduced sensitivity to rapamycin, suggesting they function downstream of TOR kinase. Hyphae formation by gln3 and gat1 mutants differed in relation to nitrogen source. The gln3 mutants formed hyphae on several nitrogen sources, but not ammonium or urea, suggesting a defect in ammonium assimilation. Virulence of gln3 mutants was reduced in a murine model of disseminated disease. We conclude that GLN3 has a broad role in nitrogen metabolism, partially overlapping, but distinct from that of GAT1, and that its function is important for the ability of C. albicans to survive within the host environment.

摘要

对编码GATA因子的基因GLN3在白色念珠菌氮代谢中的功能进行了研究。GLN3缺失突变体在多种氮源上的生长速率降低。在同时缺失GLN3和第二个GATA因子基因GAT1的突变体中观察到更严重的生长缺陷。GLN3是参与铵同化的两个基因的激活剂,即编码NADP依赖性谷氨酸脱氢酶的GDH3和编码铵通透酶的MEP2。GAT1有助于MEP2的表达,但对GDH3的表达没有影响。一个假定的通用氨基酸通透酶基因GAP2也被GLN3和GAT1激活,但GLN3的激活依赖于氮源。GLN3组成性表达,但GAT1的表达随氮源而变化,在gln3突变体中降低了2至3倍。gln3和gat1突变体对雷帕霉素的敏感性均降低,表明它们在TOR激酶下游发挥作用。gln3和gat1突变体形成菌丝的情况与氮源有关。gln3突变体在几种氮源上形成菌丝,但在铵或尿素上不形成,表明铵同化存在缺陷。在播散性疾病的小鼠模型中,gln3突变体的毒力降低。我们得出结论,GLN3在氮代谢中具有广泛作用,部分与GAT1重叠但又不同,并且其功能对于白色念珠菌在宿主环境中生存的能力很重要。

相似文献

1
GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans.
Fungal Genet Biol. 2008 Apr;45(4):514-26. doi: 10.1016/j.fgb.2007.08.006. Epub 2007 Sep 7.
3
Nitrogen regulation of morphogenesis and protease secretion in Candida albicans.
Int J Med Microbiol. 2011 Jun;301(5):390-4. doi: 10.1016/j.ijmm.2011.04.005. Epub 2011 May 8.
4
6
The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans.
Fungal Genet Biol. 2011 Feb;48(2):192-9. doi: 10.1016/j.fgb.2010.07.011. Epub 2010 Jul 29.
7
Gln3 is a main regulator of nitrogen assimilation in Candida glabrata.
Microbiology (Reading). 2016 Aug;162(8):1490-1499. doi: 10.1099/mic.0.000312. Epub 2016 May 24.
9
Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans.
Genetics. 2011 Jun;188(2):309-23. doi: 10.1534/genetics.111.128538. Epub 2011 Mar 24.
10
Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in .
J Microbiol Biotechnol. 2021 May 28;31(5):659-666. doi: 10.4014/jmb.2012.12034.

引用本文的文献

1
Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis.
Nat Commun. 2024 Oct 24;15(1):9190. doi: 10.1038/s41467-024-53442-8.
2
Proteomics of : Overview of Changes Triggered by Nitrogen Catabolite Repression.
J Fungi (Basel). 2023 Nov 12;9(11):1102. doi: 10.3390/jof9111102.
3
Amino Acid Sensing and Assimilation by the Fungal Pathogen in the Human Host.
Pathogens. 2021 Dec 22;11(1):5. doi: 10.3390/pathogens11010005.
4
Correction: Glutamate dehydrogenase (Gdh2)-dependent alkalization is dispensable for escape from macrophages and virulence of Candida albicans.
PLoS Pathog. 2021 Aug 30;17(8):e1009877. doi: 10.1371/journal.ppat.1009877. eCollection 2021 Aug.
5
Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in .
J Microbiol Biotechnol. 2021 May 28;31(5):659-666. doi: 10.4014/jmb.2012.12034.
6
Glutamate dehydrogenase (Gdh2)-dependent alkalization is dispensable for escape from macrophages and virulence of Candida albicans.
PLoS Pathog. 2020 Sep 16;16(9):e1008328. doi: 10.1371/journal.ppat.1008328. eCollection 2020 Sep.
7
Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans.
PLoS Genet. 2019 Feb 11;15(2):e1007976. doi: 10.1371/journal.pgen.1007976. eCollection 2019 Feb.
8
Dal81 Regulates Expression of Arginine Metabolism Genes in .
mSphere. 2018 Mar 7;3(2). doi: 10.1128/mSphere.00028-18. eCollection 2018 Mar-Apr.
9
Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi.
Mol Microbiol. 2018 Feb;107(3):277-297. doi: 10.1111/mmi.13887. Epub 2017 Dec 29.
10
species Rewired Hyphae Developmental Programs for Chlamydospore Formation.
Front Microbiol. 2016 Oct 27;7:1697. doi: 10.3389/fmicb.2016.01697. eCollection 2016.

本文引用的文献

3
Genetic analysis of the TOR pathway in Aspergillus nidulans.
Eukaryot Cell. 2005 Sep;4(9):1595-8. doi: 10.1128/EC.4.9.1595-1598.2005.
4
A human-curated annotation of the Candida albicans genome.
PLoS Genet. 2005 Jul;1(1):36-57. doi: 10.1371/journal.pgen.0010001. Epub 2005 Jun 17.
5
The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans.
Mol Microbiol. 2005 May;56(3):649-69. doi: 10.1111/j.1365-2958.2005.04576.x.
6
Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans.
Microbiology (Reading). 2005 Apr;151(Pt 4):1061-1071. doi: 10.1099/mic.0.27487-0.
8
Transcriptional response of Candida albicans upon internalization by macrophages.
Eukaryot Cell. 2004 Oct;3(5):1076-87. doi: 10.1128/EC.3.5.1076-1087.2004.
10
The diploid genome sequence of Candida albicans.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7329-34. doi: 10.1073/pnas.0401648101. Epub 2004 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验