Suppr超能文献

肽表位:基于亲和选择肽的表位作图

Pepitope: epitope mapping from affinity-selected peptides.

作者信息

Mayrose Itay, Penn Osnat, Erez Elana, Rubinstein Nimrod D, Shlomi Tomer, Freund Natalia Tarnovitski, Bublil Erez M, Ruppin Eytan, Sharan Roded, Gershoni Jonathan M, Martz Eric, Pupko Tal

机构信息

Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Bioinformatics. 2007 Dec 1;23(23):3244-6. doi: 10.1093/bioinformatics/btm493. Epub 2007 Oct 31.

Abstract

UNLABELLED

Identifying the epitope to which an antibody binds is central for many immunological applications such as drug design and vaccine development. The Pepitope server is a web-based tool that aims at predicting discontinuous epitopes based on a set of peptides that were affinity-selected against a monoclonal antibody of interest. The server implements three different algorithms for epitope mapping: PepSurf, Mapitope, and a combination of the two. The rationale behind these algorithms is that the set of peptides mimics the genuine epitope in terms of physicochemical properties and spatial organization. When the three-dimensional (3D) structure of the antigen is known, the information in these peptides can be used to computationally infer the corresponding epitope. A user-friendly web interface and a graphical tool that allows viewing the predicted epitopes were developed. Pepitope can also be applied for inferring other types of protein-protein interactions beyond the immunological context, and as a general tool for aligning linear sequences to a 3D structure.

AVAILABILITY

http://pepitope.tau.ac.il/

摘要

未标记

确定抗体所结合的表位对于许多免疫学应用(如药物设计和疫苗开发)至关重要。Pepitope服务器是一个基于网络的工具,旨在基于一组针对感兴趣的单克隆抗体进行亲和选择的肽段来预测不连续表位。该服务器实现了三种不同的表位映射算法:PepSurf、Mapitope以及两者的组合。这些算法背后的基本原理是,这组肽段在物理化学性质和空间组织方面模拟了真正的表位。当抗原的三维(3D)结构已知时,这些肽段中的信息可用于通过计算推断相应的表位。开发了一个用户友好的网络界面和一个允许查看预测表位的图形工具。Pepitope还可用于推断免疫背景之外的其他类型的蛋白质-蛋白质相互作用,并作为将线性序列与3D结构进行比对的通用工具。

可用性

http://pepitope.tau.ac.il/

相似文献

1
Pepitope: epitope mapping from affinity-selected peptides.
Bioinformatics. 2007 Dec 1;23(23):3244-6. doi: 10.1093/bioinformatics/btm493. Epub 2007 Oct 31.
2
Discontinuous epitope prediction based on mimotope analysis.
Bioinformatics. 2006 May 1;22(9):1088-95. doi: 10.1093/bioinformatics/btl012. Epub 2006 Jan 24.
3
Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm.
Nucleic Acids Res. 2007;35(1):69-78. doi: 10.1093/nar/gkl975. Epub 2006 Dec 6.
4
Selection of protein epitopes for antibody production.
Biotechniques. 2005 May;38(5):723-7. doi: 10.2144/05385ST02.
5
BlockLogo: visualization of peptide and sequence motif conservation.
J Immunol Methods. 2013 Dec 31;400-401:37-44. doi: 10.1016/j.jim.2013.08.014. Epub 2013 Aug 31.
6
ElliPro: a new structure-based tool for the prediction of antibody epitopes.
BMC Bioinformatics. 2008 Dec 2;9:514. doi: 10.1186/1471-2105-9-514.
7
The MEPS server for identifying protein conformational epitopes.
BMC Bioinformatics. 2007 Mar 8;8 Suppl 1(Suppl 1):S6. doi: 10.1186/1471-2105-8-S1-S6.
8
MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries.
BMC Bioinformatics. 2011 May 25;12:199. doi: 10.1186/1471-2105-12-199.
9
PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.
PLoS One. 2012;7(5):e37869. doi: 10.1371/journal.pone.0037869. Epub 2012 May 25.

引用本文的文献

1
Peptide immunoarrays for rationale development of vaccines with enhanced cross-reactivity.
PLoS One. 2025 Sep 4;20(9):e0330741. doi: 10.1371/journal.pone.0330741. eCollection 2025.
2
Advances of computational methods enhance the development of multi-epitope vaccines.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbaf055.
3
Computational epitope-based vaccine design with bioinformatics approach; a review.
Heliyon. 2025 Jan 4;11(1):e41714. doi: 10.1016/j.heliyon.2025.e41714. eCollection 2025 Jan 15.
4
A Novel Serum-Based Diagnosis of Alzheimer's Disease Using an Advanced Phage-Based Biochip.
Adv Sci (Weinh). 2023 Jul;10(21):e2301650. doi: 10.1002/advs.202301650. Epub 2023 May 7.
6
Current Update on Rotavirus in-Silico Multiepitope Vaccine Design.
ACS Omega. 2022 Dec 30;8(1):190-207. doi: 10.1021/acsomega.2c07213. eCollection 2023 Jan 10.
7
EPIphany-A Platform for Analysis and Visualization of Peptide Immunoarray Data.
Front Bioinform. 2021 Jul 7;1:694324. doi: 10.3389/fbinf.2021.694324. eCollection 2021.
8
B.1.1.7 (Alpha) variant is the most antigenic compared to Wuhan strain, B.1.351, B.1.1.28/triple mutant and B.1.429 variants.
Front Microbiol. 2022 Aug 12;13:895695. doi: 10.3389/fmicb.2022.895695. eCollection 2022.
9
Vaccines and Immunoinformatics for Vaccine Design.
Adv Exp Med Biol. 2022;1368:95-110. doi: 10.1007/978-981-16-8969-7_5.

本文引用的文献

1
The MEPS server for identifying protein conformational epitopes.
BMC Bioinformatics. 2007 Mar 8;8 Suppl 1(Suppl 1):S6. doi: 10.1186/1471-2105-8-S1-S6.
3
Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm.
Nucleic Acids Res. 2007;35(1):69-78. doi: 10.1093/nar/gkl975. Epub 2006 Dec 6.
5
Mapping a neutralizing epitope on the SARS coronavirus spike protein: computational prediction based on affinity-selected peptides.
J Mol Biol. 2006 May 26;359(1):190-201. doi: 10.1016/j.jmb.2006.03.008. Epub 2006 Mar 22.
6
Discontinuous epitope prediction based on mimotope analysis.
Bioinformatics. 2006 May 1;22(9):1088-95. doi: 10.1093/bioinformatics/btl012. Epub 2006 Jan 24.
7
SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W39-43. doi: 10.1093/nar/gki398.
9
The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1.
J Mol Biol. 2003 Nov 14;334(1):87-101. doi: 10.1016/j.jmb.2003.09.002.
10
SiteLight: binding-site prediction using phage display libraries.
Protein Sci. 2003 Jul;12(7):1344-59. doi: 10.1110/ps.0237103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验