Suppr超能文献

利用进化特征在12个果蝇基因组中发现功能元件。

Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures.

作者信息

Stark Alexander, Lin Michael F, Kheradpour Pouya, Pedersen Jakob S, Parts Leopold, Carlson Joseph W, Crosby Madeline A, Rasmussen Matthew D, Roy Sushmita, Deoras Ameya N, Ruby J Graham, Brennecke Julius, Hodges Emily, Hinrichs Angie S, Caspi Anat, Paten Benedict, Park Seung-Won, Han Mira V, Maeder Morgan L, Polansky Benjamin J, Robson Bryanne E, Aerts Stein, van Helden Jacques, Hassan Bassem, Gilbert Donald G, Eastman Deborah A, Rice Michael, Weir Michael, Hahn Matthew W, Park Yongkyu, Dewey Colin N, Pachter Lior, Kent W James, Haussler David, Lai Eric C, Bartel David P, Hannon Gregory J, Kaufman Thomas C, Eisen Michael B, Clark Andrew G, Smith Douglas, Celniker Susan E, Gelbart William M, Kellis Manolis

机构信息

The Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02140, USA.

出版信息

Nature. 2007 Nov 8;450(7167):219-32. doi: 10.1038/nature06340.

Abstract

Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or 'evolutionary signatures', dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies.

摘要

对多个相关物种进行测序,随后进行比较基因组学分析,这构成了一种系统理解任何基因组的强大方法。在此,我们利用12种果蝇的基因组来从头发现果蝇中的功能元件。每种类型的功能元件都显示出由其精确的选择限制所决定的特征性变化模式,即“进化特征”。这些特征能够识别新的蛋白质编码基因和外显子、虚假和错误的基因注释,以及众多不寻常的基因结构,包括大量的终止密码子通读。同样,我们预测非蛋白质编码RNA基因和结构以及新的微小RNA(miRNA)基因。我们提供了来自发夹臂和两条DNA链的miRNA加工和功能的证据。我们识别出几类转录前和转录后的调控基序,并高度自信地预测单个基序实例。我们还研究了发现能力如何随所比较物种的分歧程度和数量而变化,并为比较研究提供了一般指导原则。

相似文献

1
Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures.
Nature. 2007 Nov 8;450(7167):219-32. doi: 10.1038/nature06340.
2
Evolution of genes and genomes on the Drosophila phylogeny.
Nature. 2007 Nov 8;450(7167):203-18. doi: 10.1038/nature06341.
3
Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes.
Genome Res. 2007 Dec;17(12):1823-36. doi: 10.1101/gr.6679507. Epub 2007 Nov 7.
4
Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes.
Genome Res. 2007 Dec;17(12):1865-79. doi: 10.1101/gr.6593807. Epub 2007 Nov 7.
5
Fruit fly family fun.
Cell. 2007 Dec 28;131(7):1222-3. doi: 10.1016/j.cell.2007.12.003.
6
Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome.
PLoS Biol. 2012;10(11):e1001420. doi: 10.1371/journal.pbio.1001420. Epub 2012 Nov 6.
7
Evolutionary flux of canonical microRNAs and mirtrons in Drosophila.
Nat Genet. 2010 Jan;42(1):6-9; author reply 9-10. doi: 10.1038/ng0110-6.
8
Evolutionary genomics. Fruit fly blitz shows the power of comparative genomics.
Science. 2007 Nov 9;318(5852):903. doi: 10.1126/science.318.5852.903.
9
Patterns of DNA-sequence divergence between Drosophila miranda and D. pseudoobscura.
J Mol Evol. 2009 Dec;69(6):601-11. doi: 10.1007/s00239-009-9298-2. Epub 2009 Oct 27.
10
Origins and evolution of microRNA genes in Drosophila species.
Genome Biol Evol. 2010 Jul 12;2:180-9. doi: 10.1093/gbe/evq009.

引用本文的文献

1
Upstream open reading frames dynamically modulate CLOCK protein translation to regulate circadian rhythms and sleep.
PLoS Biol. 2025 May 12;23(5):e3003173. doi: 10.1371/journal.pbio.3003173. eCollection 2025 May.
2
CMP-sialic acid synthetase in Drosophila requires N-glycosylation of a noncanonical site.
J Biol Chem. 2025 Apr 7;301(6):108483. doi: 10.1016/j.jbc.2025.108483.
5
Multilevel omics for the discovery of biomarkers in pediatric sepsis.
Pediatr Investig. 2023 Nov 21;7(4):277-289. doi: 10.1002/ped4.12405. eCollection 2023 Dec.
6
PARP-1 is a transcriptional rheostat of metabolic and bivalent genes during development.
Life Sci Alliance. 2023 Nov 27;7(2). doi: 10.26508/lsa.202302369. Print 2024 Feb.
8
Identification of clade-wide putative -regulatory elements from conserved non-coding sequences in Cucurbitaceae genomes.
Hortic Res. 2023 Feb 28;10(4):uhad038. doi: 10.1093/hr/uhad038. eCollection 2023 Apr.
9
Prediction accuracy of regulatory elements from sequence varies by functional sequencing technique.
Front Cell Infect Microbiol. 2023 Aug 2;13:1182567. doi: 10.3389/fcimb.2023.1182567. eCollection 2023.
10
Chromosome-level organization of the regulatory genome in the Drosophila nervous system.
Cell. 2023 Aug 31;186(18):3826-3844.e26. doi: 10.1016/j.cell.2023.07.008. Epub 2023 Aug 2.

本文引用的文献

1
Evolutionary patterns of non-coding RNAs.
Theory Biosci. 2005 Apr;123(4):301-69. doi: 10.1016/j.thbio.2005.01.002.
4
Gene family evolution across 12 Drosophila genomes.
PLoS Genet. 2007 Nov;3(11):e197. doi: 10.1371/journal.pgen.0030197.
5
Evolution of genes and genomes on the Drosophila phylogeny.
Nature. 2007 Nov 8;450(7167):203-18. doi: 10.1038/nature06341.
6
Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes.
Genome Res. 2007 Dec;17(12):1865-79. doi: 10.1101/gr.6593807. Epub 2007 Nov 7.
7
Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs.
Genome Res. 2007 Dec;17(12):1850-64. doi: 10.1101/gr.6597907. Epub 2007 Nov 7.
8
Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes.
Genome Res. 2007 Dec;17(12):1823-36. doi: 10.1101/gr.6679507. Epub 2007 Nov 7.
9
Reliable prediction of regulator targets using 12 Drosophila genomes.
Genome Res. 2007 Dec;17(12):1919-31. doi: 10.1101/gr.7090407. Epub 2007 Nov 7.
10
Fine-tuning enhancer models to predict transcriptional targets across multiple genomes.
PLoS One. 2007 Nov 7;2(11):e1115. doi: 10.1371/journal.pone.0001115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验