Suppr超能文献

脂质生成和脂质分解中的脂滴。

Lipid droplets in lipogenesis and lipolysis.

作者信息

Ducharme Nicole A, Bickel Perry E

机构信息

Center for Diabetes and Obesity Research, Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.

出版信息

Endocrinology. 2008 Mar;149(3):942-9. doi: 10.1210/en.2007-1713. Epub 2008 Jan 17.

Abstract

Organisms store energy for later use during times of nutrient scarcity. Excess energy is stored as triacylglycerol in lipid droplets during lipogenesis. When energy is required, the stored triacylglycerol is hydrolyzed via activation of lipolytic pathways. The coordination of lipid storage and utilization is regulated by the perilipin family of lipid droplet coat proteins [perilipin, adipophilin/adipocyte differentiation-related protein (ADRP), S3-12, tail-interacting protein of 47 kilodaltons (TIP47), and myocardial lipid droplet protein (MLDP)/oxidative tissues-enriched PAT protein (OXPAT)/lipid storage droplet protein 5 (LSDP5)]. Lipid droplets are dynamic and heterogeneous in size, location, and protein content. The proteins that coat lipid droplets change during lipid droplet biogenesis and are dependent upon multiple factors, including tissue-specific expression and metabolic state (basal vs. lipogenic vs. lipolytic). New data suggest that proteins previously implicated in vesicle trafficking, including Rabs, soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs), and motor and cytoskeletal proteins, likely orchestrate the movement and fusion of lipid droplets. Thus, rather than inert cytoplasmic inclusions, lipid droplets are now appreciated as dynamic organelles that are critical for management of cellular lipid stores. That much remains to be discovered is suggested by the recent identification of a novel lipase [adipocyte triglyceride lipase (ATGL)] and lipase regulator [Comparative Gene Identification-58 (CGI-58)], which has led to reconsideration of the decades-old model of lipolysis. Future discovery likely will be driven by the exploitation of model organisms and by human genetic studies.

摘要

生物体在营养物质稀缺时储存能量以供日后使用。在脂肪生成过程中,多余的能量以三酰甘油的形式储存在脂滴中。当需要能量时,储存的三酰甘油通过脂解途径的激活而被水解。脂质储存和利用的协调由脂滴包被蛋白的围脂滴蛋白家族(围脂滴蛋白、脂肪亲和蛋白/脂肪细胞分化相关蛋白(ADRP)、S3-12、47千道尔顿尾相互作用蛋白(TIP47)和心肌脂滴蛋白(MLDP)/富含氧化组织的PAT蛋白(OXPAT)/脂质储存滴蛋白5(LSDP5))调节。脂滴在大小、位置和蛋白质含量方面是动态且异质的。在脂滴生物发生过程中,包被脂滴的蛋白质会发生变化,并取决于多种因素,包括组织特异性表达和代谢状态(基础状态与脂肪生成状态与脂解状态)。新数据表明,先前与囊泡运输有关的蛋白质,包括Rabs、可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNAREs)以及运动蛋白和细胞骨架蛋白,可能参与协调脂滴的移动和融合。因此,脂滴现在被认为是动态细胞器,而非惰性的细胞质内含物,对细胞脂质储存的管理至关重要。最近发现的一种新型脂肪酶[脂肪细胞甘油三酯脂肪酶(ATGL)]和脂肪酶调节剂[比较基因识别-58(CGI-58)]促使人们重新审视已有数十年历史的脂解模型,这表明仍有许多有待发现的内容。未来的发现可能会受到模式生物的利用和人类遗传学研究的推动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验