Suppr超能文献

在遗传基因组学实验中通过结构方程模型进行基因网络推断。

Gene network inference via structural equation modeling in genetical genomics experiments.

作者信息

Liu Bing, de la Fuente Alberto, Hoeschele Ina

机构信息

Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0477, USA.

出版信息

Genetics. 2008 Mar;178(3):1763-76. doi: 10.1534/genetics.107.080069. Epub 2008 Feb 3.

Abstract

Our goal is gene network inference in genetical genomics or systems genetics experiments. For species where sequence information is available, we first perform expression quantitative trait locus (eQTL) mapping by jointly utilizing cis-, cis-trans-, and trans-regulation. After using local structural models to identify regulator-target pairs for each eQTL, we construct an encompassing directed network (EDN) by assembling all retained regulator-target relationships. The EDN has nodes corresponding to expressed genes and eQTL and directed edges from eQTL to cis-regulated target genes, from cis-regulated genes to cis-trans-regulated target genes, from trans-regulator genes to target genes, and from trans-eQTL to target genes. For network inference within the strongly constrained search space defined by the EDN, we propose structural equation modeling (SEM), because it can model cyclic networks and the EDN indeed contains feedback relationships. On the basis of a factorization of the likelihood and the constrained search space, our SEM algorithm infers networks involving several hundred genes and eQTL. Structure inference is based on a penalized likelihood ratio and an adaptation of Occam's window model selection. The SEM algorithm was evaluated using data simulated with nonlinear ordinary differential equations and known cyclic network topologies and was applied to a real yeast data set.

摘要

我们的目标是在遗传基因组学或系统遗传学实验中进行基因网络推断。对于有序列信息可用的物种,我们首先通过联合利用顺式、顺式-反式和反式调控来进行表达定量性状位点(eQTL)定位。在使用局部结构模型识别每个eQTL的调控因子-靶标对之后,我们通过组装所有保留的调控因子-靶标关系来构建一个包含性的有向网络(EDN)。EDN具有对应于表达基因和eQTL的节点,以及从eQTL到顺式调控靶基因、从顺式调控基因到顺式-反式调控靶基因、从反式调控基因到靶基因、从反式eQTL到靶基因的有向边。对于在EDN定义的强约束搜索空间内进行网络推断,我们提出了结构方程模型(SEM),因为它可以对循环网络进行建模,而EDN确实包含反馈关系。基于似然分解和约束搜索空间,我们的SEM算法可以推断涉及数百个基因和eQTL的网络。结构推断基于惩罚似然比和奥卡姆窗口模型选择的一种变体。使用非线性常微分方程模拟的数据和已知的循环网络拓扑结构对SEM算法进行了评估,并将其应用于一个真实的酵母数据集。

相似文献

1
Gene network inference via structural equation modeling in genetical genomics experiments.
Genetics. 2008 Mar;178(3):1763-76. doi: 10.1534/genetics.107.080069. Epub 2008 Feb 3.
2
High-confidence discovery of genetic network regulators in expression quantitative trait loci data.
Genetics. 2011 Mar;187(3):955-64. doi: 10.1534/genetics.110.124685. Epub 2011 Jan 6.
3
Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
BMC Genomics. 2006 May 24;7:125. doi: 10.1186/1471-2164-7-125.
4
Learning gene networks under SNP perturbations using eQTL datasets.
PLoS Comput Biol. 2014 Feb 27;10(2):e1003420. doi: 10.1371/journal.pcbi.1003420. eCollection 2014 Feb.
5
Genetical genomics analysis of a yeast segregant population for transcription network inference.
Genetics. 2005 Jun;170(2):533-42. doi: 10.1534/genetics.105.041103. Epub 2005 Mar 21.
6
Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
PLoS Comput Biol. 2013;9(5):e1003068. doi: 10.1371/journal.pcbi.1003068. Epub 2013 May 23.
7
Joint eQTL mapping and inference of gene regulatory network improves power of detecting both cis- and trans-eQTLs.
Bioinformatics. 2021 Dec 22;38(1):149-156. doi: 10.1093/bioinformatics/btab609.
8
Uncovering genetic regulatory network divergence between duplicate genes using yeast eQTL landscape.
J Exp Zool B Mol Dev Evol. 2009 Nov 15;312(7):722-33. doi: 10.1002/jez.b.21290.
9
Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
PLoS Comput Biol. 2010 Dec 2;6(12):e1001014. doi: 10.1371/journal.pcbi.1001014.
10
Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
Mol Omics. 2021 Apr 1;17(2):241-251. doi: 10.1039/d0mo00140f. Epub 2021 Jan 13.

引用本文的文献

1
A Selective Review of Network Analysis Methods for Gene Expression Data.
Methods Mol Biol. 2025;2880:293-307. doi: 10.1007/978-1-0716-4276-4_14.
2
Gene regulatory networks in disease and ageing.
Nat Rev Nephrol. 2024 Sep;20(9):616-633. doi: 10.1038/s41581-024-00849-7. Epub 2024 Jun 12.
3
Inference of causal metabolite networks in the presence of invalid instrumental variables with GWAS summary data.
Genet Epidemiol. 2023 Dec;47(8):585-599. doi: 10.1002/gepi.22535. Epub 2023 Aug 13.
4
Bayesian Method for Causal Discovery of Latent-Variable Models from a Mixture of Experimental and Observational Data.
Comput Stat Data Anal. 2012 Jul;56(7):2183-2205. doi: 10.1016/j.csda.2012.01.010. Epub 2012 Jan 24.
5
Multi-trait multi-locus SEM model discriminates SNPs of different effects.
BMC Genomics. 2020 Jul 28;21(Suppl 8):490. doi: 10.1186/s12864-020-06833-2.
6
Gene expression networks in the Genetic Reference Panel.
Genome Res. 2020 Mar;30(3):485-496. doi: 10.1101/gr.257592.119. Epub 2020 Mar 6.
7
Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.
BMC Bioinformatics. 2020 Jan 9;21(1):12. doi: 10.1186/s12859-019-3314-3.
8
Utilizing trait networks and structural equation models as tools to interpret multi-trait genome-wide association studies.
Plant Methods. 2019 Sep 18;15:107. doi: 10.1186/s13007-019-0493-x. eCollection 2019.
10
Inference of differential gene regulatory networks based on gene expression and genetic perturbation data.
Bioinformatics. 2020 Jan 1;36(1):197-204. doi: 10.1093/bioinformatics/btz529.

本文引用的文献

1
A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis.
Genetics. 2009 Mar;181(3):1077-86. doi: 10.1534/genetics.108.094565. Epub 2008 Dec 22.
2
Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge.
Stat Appl Genet Mol Biol. 2007;6:Article15. doi: 10.2202/1544-6115.1282. Epub 2007 May 29.
3
Genetical genomics: use all data.
BMC Genomics. 2007 Mar 12;8:69. doi: 10.1186/1471-2164-8-69.
5
An integrative approach for causal gene identification and gene regulatory pathway inference.
Bioinformatics. 2006 Jul 15;22(14):e489-96. doi: 10.1093/bioinformatics/btl234.
6
Structural model analysis of multiple quantitative traits.
PLoS Genet. 2006 Jul;2(7):e114. doi: 10.1371/journal.pgen.0020114. Epub 2006 Jun 7.
7
Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
BMC Genomics. 2006 May 24;7:125. doi: 10.1186/1471-2164-7-125.
8
Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes.
Am J Hum Genet. 2006 Jun;78(6):1011-25. doi: 10.1086/504300. Epub 2006 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验