Huang Chun Y, Roessner Ute, Eickmeier Ira, Genc Yusuf, Callahan Damien L, Shirley Neil, Langridge Peter, Bacic Antony
Australian Centre for Plant Functional Genomics, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia, 5064, Australia.
Plant Cell Physiol. 2008 May;49(5):691-703. doi: 10.1093/pcp/pcn044. Epub 2008 Mar 15.
Plants modify metabolic processes for adaptation to low phosphate (P) conditions. Whilst transcriptomic analyses show that P deficiency changes hundreds of genes related to various metabolic processes, there is limited information available for global metabolite changes of P-deficient plants, especially for cereals. As changes in metabolites are the ultimate 'readout' of changes in gene expression, we profiled polar metabolites from both shoots and roots of P-deficient barley (Hordeum vulgare) using gas chromatography-mass spectrometry (GC-MS). The results showed that mildly P-deficient plants accumulated di- and trisaccharides (sucrose, maltose, raffinose and 6-kestose), especially in shoots. Severe P deficiency increased the levels of metabolites related to ammonium metabolism in addition to di- and trisaccharides, but reduced the levels of phosphorylated intermediates (glucose-6-P, fructose-6-P, inositol-1-P and glycerol-3-P) and organic acids (alpha-ketoglutarate, succinate, fumarate and malate). The results revealed that P-deficient plants modify carbohydrate metabolism initially to reduce P consumption, and salvage P from small P-containing metabolites when P deficiency is severe, which consequently reduced levels of organic acids in the tricarboxylic acid (TCA) cycle. The extent of the effect of severe P deficiency on ammonium metabolism was also revealed by liquid chromatography-mass spectrometry (LC-MS) quantitative analysis of free amino acids. A sharp increase in the concentrations of glutamine and asparagine was observed in both shoots and roots of severely P-deficient plants. Based on these data, a strategy for improving the ability of cereals to adapt to low P environments is proposed that involves alteration in partitioning of carbohydrates into organic acids and amino acids to enable more efficient utilization of carbon in P-deficient plants.
植物会改变代谢过程以适应低磷(P)环境。虽然转录组分析表明磷缺乏会改变数百个与各种代谢过程相关的基因,但关于缺磷植物整体代谢物变化的信息有限,尤其是对于谷类作物。由于代谢物的变化是基因表达变化的最终“读出”结果,我们使用气相色谱 - 质谱联用仪(GC - MS)对缺磷大麦(Hordeum vulgare)地上部和根部的极性代谢物进行了分析。结果表明,轻度缺磷的植物积累了二糖和三糖(蔗糖、麦芽糖、棉子糖和6 - 蔗果三糖),尤其是在地上部。严重缺磷除了增加二糖和三糖外,还提高了与铵代谢相关的代谢物水平,但降低了磷酸化中间体(葡萄糖 - 6 - 磷酸、果糖 - 6 - 磷酸、肌醇 - 1 - 磷酸和甘油 - 3 - 磷酸)和有机酸(α - 酮戊二酸、琥珀酸、富马酸和苹果酸)的水平。结果表明,缺磷植物最初会改变碳水化合物代谢以减少磷的消耗,并在严重缺磷时从小的含磷代谢物中回收磷, 这进而降低了三羧酸(TCA)循环中有机酸的水平。通过对游离氨基酸进行液相色谱 - 质谱联用(LC - MS)定量分析也揭示了严重缺磷对铵代谢影响的程度。在严重缺磷植物的地上部和根部均观察到谷氨酰胺和天冬酰胺浓度急剧增加。基于这些数据,提出了一种提高谷类作物适应低磷环境能力的策略,该策略涉及改变碳水化合物向有机酸和氨基酸的分配,以使缺磷植物能够更有效地利用碳。