Suppr超能文献

常春藤细胞:一群产生一氧化氮的、发放慢动作电位的γ-氨基丁酸能神经元及其在海马网络活动中的作用

Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity.

作者信息

Fuentealba Pablo, Begum Rahima, Capogna Marco, Jinno Shozo, Márton László F, Csicsvari Jozsef, Thomson Alex, Somogyi Peter, Klausberger Thomas

机构信息

MRC Anatomical Neuropharmacology Unit, Oxford University, Oxford OX1 3TH, UK.

出版信息

Neuron. 2008 Mar 27;57(6):917-29. doi: 10.1016/j.neuron.2008.01.034.

Abstract

In the cerebral cortex, GABAergic interneurons are often regarded as fast-spiking cells. We have identified a type of slow-spiking interneuron that offers distinct contributions to network activity. "Ivy" cells, named after their dense and fine axons innervating mostly basal and oblique pyramidal cell dendrites, are more numerous than the parvalbumin-expressing basket, bistratified, or axo-axonic cells. Ivy cells express nitric oxide synthase, neuropeptide Y, and high levels of GABA(A) receptor alpha1 subunit; they discharge at a low frequency with wide spikes in vivo, yet are distinctively phase-locked to behaviorally relevant network rhythms including theta, gamma, and ripple oscillations. Paired recordings in vitro showed that Ivy cells receive depressing EPSPs from pyramidal cells, which in turn receive slowly rising and decaying inhibitory input from Ivy cells. In contrast to fast-spiking interneurons operating with millisecond precision, the highly abundant Ivy cells express presynaptically acting neuromodulators and regulate the excitability of pyramidal cell dendrites through slowly rising and decaying GABAergic inputs.

摘要

在大脑皮层中,γ-氨基丁酸(GABA)能中间神经元通常被视为快发放细胞。我们发现了一种慢发放中间神经元,它对网络活动有着独特的贡献。“常春藤”细胞因其密集且纤细的轴突主要支配基底和斜向锥体细胞的树突而得名,其数量比表达小白蛋白的篮状细胞、双分层细胞或轴突-轴突细胞更多。常春藤细胞表达一氧化氮合酶、神经肽Y以及高水平的GABA(A)受体α1亚基;它们在体内以低频发放,动作电位宽大,然而却能与包括θ波、γ波和涟漪振荡在内的行为相关网络节律显著锁相。体外配对记录显示,常春藤细胞从锥体细胞接收递减的兴奋性突触后电位(EPSP),而锥体细胞反过来又从常春藤细胞接收缓慢上升和衰减的抑制性输入。与以毫秒精度运作的快发放中间神经元不同,高度丰富的常春藤细胞表达突触前作用的神经调质,并通过缓慢上升和衰减的GABA能输入来调节锥体细胞树突的兴奋性。

相似文献

2
Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.
J Neurosci. 2011 Oct 19;31(42):14861-70. doi: 10.1523/JNEUROSCI.2269-11.2011.
4
Behavior-dependent specialization of identified hippocampal interneurons.
Nat Neurosci. 2012 Sep;15(9):1265-71. doi: 10.1038/nn.3176. Epub 2012 Aug 5.
5
Functional specificity of mossy fiber innervation of GABAergic cells in the hippocampus.
J Neurosci. 2009 Apr 1;29(13):4239-51. doi: 10.1523/JNEUROSCI.5390-08.2009.
6
Altered GABAA,slow inhibition and network oscillations in mice lacking the GABAA receptor beta3 subunit.
J Neurophysiol. 2009 Dec;102(6):3643-55. doi: 10.1152/jn.00651.2009. Epub 2009 Oct 21.
7
Input and frequency-specific entrainment of postsynaptic firing by IPSPs of perisomatic or dendritic origin.
Eur J Neurosci. 2004 Nov;20(10):2681-90. doi: 10.1111/j.1460-9568.2004.03719.x.
9
Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
Eur J Neurosci. 2005 Sep;22(5):1097-108. doi: 10.1111/j.1460-9568.2005.04303.x.

引用本文的文献

1
From Morphology to Computation: How Synaptic Organization Shapes Place Fields in CA1 Pyramidal Neurons.
bioRxiv. 2025 Jun 2:2025.05.30.657022. doi: 10.1101/2025.05.30.657022.
2
Hippocampal Interneurons Shape Spatial Coding Alterations in Neurological Disorders.
Mol Neurobiol. 2025 May 20. doi: 10.1007/s12035-025-05020-2.
3
GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.
Adv Sci (Weinh). 2025 Mar;12(10):e2411972. doi: 10.1002/advs.202411972. Epub 2025 Jan 17.
5
Input/Output Relationships for the Primary Hippocampal Circuit.
J Neurosci. 2025 Jan 8;45(2):e0130242024. doi: 10.1523/JNEUROSCI.0130-24.2024.
6
Community-based reconstruction and simulation of a full-scale model of the rat hippocampus CA1 region.
PLoS Biol. 2024 Nov 5;22(11):e3002861. doi: 10.1371/journal.pbio.3002861. eCollection 2024 Nov.
8
Functional networks of inhibitory neurons orchestrate synchrony in the hippocampus.
PLoS Biol. 2024 Oct 14;22(10):e3002837. doi: 10.1371/journal.pbio.3002837. eCollection 2024 Oct.
9
Formation and retrieval of cell assemblies in a biologically realistic spiking neural network model of area CA3 in the mouse hippocampus.
J Comput Neurosci. 2024 Nov;52(4):303-321. doi: 10.1007/s10827-024-00881-3. Epub 2024 Sep 17.
10
Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques.
Cell Rep. 2024 Aug 27;43(8):114519. doi: 10.1016/j.celrep.2024.114519. Epub 2024 Jul 16.

本文引用的文献

2
Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14831-6. doi: 10.1073/pnas.0707204104. Epub 2007 Sep 4.
3
Hippocampal GABAergic synapses possess the molecular machinery for retrograde nitric oxide signaling.
J Neurosci. 2007 Jul 25;27(30):8101-11. doi: 10.1523/JNEUROSCI.1912-07.2007.
4
Opioids block long-term potentiation of inhibitory synapses.
Nature. 2007 Apr 26;446(7139):1086-90. doi: 10.1038/nature05726.
5
9
Reverse replay of behavioural sequences in hippocampal place cells during the awake state.
Nature. 2006 Mar 30;440(7084):680-3. doi: 10.1038/nature04587. Epub 2006 Feb 12.
10
Perivascular nerves and the regulation of cerebrovascular tone.
J Appl Physiol (1985). 2006 Mar;100(3):1059-64. doi: 10.1152/japplphysiol.00954.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验