Suppr超能文献

通过消耗60S核糖体亚基来延长酵母寿命是由Gcn4介导的。

Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.

作者信息

Steffen Kristan K, MacKay Vivian L, Kerr Emily O, Tsuchiya Mitsuhiro, Hu Di, Fox Lindsay A, Dang Nick, Johnston Elijah D, Oakes Jonathan A, Tchao Bie N, Pak Diana N, Fields Stanley, Kennedy Brian K, Kaeberlein Matt

机构信息

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

出版信息

Cell. 2008 Apr 18;133(2):292-302. doi: 10.1016/j.cell.2008.02.037.

Abstract

In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.

摘要

在几乎所有被研究的生物体中,减少热量摄入都能延长寿命。在酵母中,饮食限制导致的寿命延长被认为是由高度保守的、对营养有反应的雷帕霉素靶蛋白(TOR)、蛋白激酶A(PKA)和Sch9激酶介导的。这些激酶协同调节各种细胞过程,包括应激反应、蛋白质周转、细胞生长和核糖体生物合成。在这里,我们表明60S核糖体亚基水平的特异性降低会减缓酵母衰老。缺失编码60S亚基蛋白或加工因子的基因,或用小分子处理,这些都会抑制60S亚基的生物合成,每一种都足以显著增加酵母的复制寿命。60S亚基水平降低导致寿命延长的一种机制是通过诱导Gcn4实现的,Gcn4是一种对营养有反应的转录因子。遗传上位性分析表明,饮食限制、60S亚基丰度降低和Gcn4激活通过相似的机制延长酵母寿命。

相似文献

1
Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.
Cell. 2008 Apr 18;133(2):292-302. doi: 10.1016/j.cell.2008.02.037.
2
Life-span extension in yeast.
Science. 2006 Apr 14;312(5771):195-7; author reply 195-7. doi: 10.1126/science.312.5771.195d.
3
HST2 mediates SIR2-independent life-span extension by calorie restriction.
Science. 2005 Sep 16;309(5742):1861-4. doi: 10.1126/science.1113611. Epub 2005 Jul 28.
4
Sir2 blocks extreme life-span extension.
Cell. 2005 Nov 18;123(4):655-67. doi: 10.1016/j.cell.2005.08.042.
5
Sir2-independent life span extension by calorie restriction in yeast.
PLoS Biol. 2004 Sep;2(9):E296. doi: 10.1371/journal.pbio.0020296. Epub 2004 Aug 24.
6
Comment on "HST2 mediates SIR2-independent life-span extension by calorie restriction".
Science. 2006 Jun 2;312(5778):1312; author reply 1312. doi: 10.1126/science.1124608.
7
Cell biology. Twists in the tale of the aging yeast.
Science. 2005 Nov 18;310(5751):1124-5. doi: 10.1126/science.1121310.
10
Sir2 and calorie restriction in yeast: a skeptical perspective.
Ageing Res Rev. 2007 Aug;6(2):128-40. doi: 10.1016/j.arr.2007.04.001. Epub 2007 Apr 19.

引用本文的文献

1
The 18S rRNA methyltransferase DIMT-1 regulates lifespan in the germline later in life.
Nat Commun. 2025 Jul 28;16(1):6944. doi: 10.1038/s41467-025-62323-7.
2
Loss of Pol III repressor Maf1 in neurons promotes longevity by preventing the age-related decline in 5S rRNA and translation.
PLoS Biol. 2025 Jul 15;23(7):e3003250. doi: 10.1371/journal.pbio.3003250. eCollection 2025 Jul.
4
5
Auto-sumoylation of the yeast Ubc9 E2 SUMO-conjugating enzyme extends cellular lifespan.
Nat Commun. 2025 Apr 20;16(1):3735. doi: 10.1038/s41467-025-58925-w.
6
Phase separation of the PRPP amidotransferase into dynamic condensates promotes de novo purine synthesis in yeast.
PLoS Biol. 2025 Apr 10;23(4):e3003111. doi: 10.1371/journal.pbio.3003111. eCollection 2025 Apr.
7
Sexually dimorphic ATF4 expression in the fat confers female stress tolerance in .
bioRxiv. 2024 Dec 27:2024.12.27.630478. doi: 10.1101/2024.12.27.630478.
8
Disruption of tRNA biogenesis enhances proteostatic resilience, improves later-life health, and promotes longevity.
PLoS Biol. 2024 Oct 22;22(10):e3002853. doi: 10.1371/journal.pbio.3002853. eCollection 2024 Oct.
9
Hyperactive mTORC1/4EBP1 signaling dysregulates proteostasis and accelerates cardiac aging.
Geroscience. 2025 Apr;47(2):1823-1836. doi: 10.1007/s11357-024-01368-w. Epub 2024 Oct 9.
10
Stress-Induced Eukaryotic Translational Regulatory Mechanisms.
J Clin Med Sci. 2024;8(2). Epub 2024 Jun 24.

本文引用的文献

1
Functional specificity among ribosomal proteins regulates gene expression.
Cell. 2007 Nov 2;131(3):557-71. doi: 10.1016/j.cell.2007.08.037.
2
Protein translation, 2007.
Aging Cell. 2007 Dec;6(6):731-4. doi: 10.1111/j.1474-9726.2007.00341.x. Epub 2007 Oct 17.
3
TOR signaling and S6 kinase 1: Yeast catches up.
Cell Metab. 2007 Jul;6(1):1-2. doi: 10.1016/j.cmet.2007.06.009.
4
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae.
Mol Cell. 2007 Jun 8;26(5):663-74. doi: 10.1016/j.molcel.2007.04.020.
5
Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation.
Mol Cell Biol. 2007 Sep;27(17):5968-85. doi: 10.1128/MCB.00019-07. Epub 2007 Jun 4.
6
Longevity determined by developmental arrest genes in Caenorhabditis elegans.
Aging Cell. 2007 Aug;6(4):525-33. doi: 10.1111/j.1474-9726.2007.00305.x. Epub 2007 May 29.
7
Lifespan regulation by evolutionarily conserved genes essential for viability.
PLoS Genet. 2007 Apr 6;3(4):e56. doi: 10.1371/journal.pgen.0030056. Epub 2007 Feb 27.
8
eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans.
Nature. 2007 Feb 22;445(7130):922-6. doi: 10.1038/nature05603. Epub 2007 Feb 4.
9
Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans.
Aging Cell. 2007 Feb;6(1):111-9. doi: 10.1111/j.1474-9726.2006.00266.x.
10
Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.
Aging Cell. 2007 Feb;6(1):95-110. doi: 10.1111/j.1474-9726.2006.00267.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验