Molinari Florence, Foulquier François, Tarpey Patrick S, Morelle Willy, Boissel Sarah, Teague Jon, Edkins Sarah, Futreal P Andrew, Stratton Michael R, Turner Gillian, Matthijs Gert, Gecz Jozef, Munnich Arnold, Colleaux Laurence
Laboratoire de Génétique et Epigénétique des Maladies Métaboliques, Neurosensorielles et du Développement (INSERM U781), Université Paris Descartes, Hôpital Necker-Enfants Malades, F-75015 Paris, France.
Am J Hum Genet. 2008 May;82(5):1150-7. doi: 10.1016/j.ajhg.2008.03.021. Epub 2008 May 1.
Mental retardation (MR) is the most frequent handicap among children and young adults. Although a large proportion of X-linked MR genes have been identified, only four genes responsible for autosomal-recessive nonsyndromic MR (AR-NSMR) have been described so far. Here, we report on two genes involved in autosomal-recessive and X-linked NSMR. First, autozygosity mapping in two sibs born to first-cousin French parents led to the identification of a region on 8p22-p23.1. This interval encompasses the gene N33/TUSC3 encoding one subunit of the oligosaccharyltransferase (OTase) complex, which catalyzes the transfer of an oligosaccharide chain on nascent proteins, the key step of N-glycosylation. Sequencing N33/TUSC3 identified a 1 bp insertion, c.787_788insC, resulting in a premature stop codon, p.N263fsX300, and leading to mRNA decay. Surprisingly, glycosylation analyses of patient fibroblasts showed normal N-glycan synthesis and transfer, suggesting that normal N-glycosylation observed in patient fibroblasts may be due to functional compensation. Subsequently, screening of the X-linked N33/TUSC3 paralog, the IAP gene, identified a missense mutation (c.932T-->G, p.V311G) in a family with X-linked NSMR. Recent studies of fucosylation and polysialic-acid modification of neuronal cell-adhesion glycoproteins have shown the critical role of glycosylation in synaptic plasticity. However, our data provide the first demonstration that a defect in N-glycosylation can result in NSMR. Together, our results demonstrate that fine regulation of OTase activity is essential for normal cognitive-function development, providing therefore further insights to understand the pathophysiological bases of MR.
智力迟钝(MR)是儿童和青年中最常见的残疾。尽管已经鉴定出很大一部分X连锁的MR基因,但迄今为止,仅描述了四个导致常染色体隐性非综合征性MR(AR-NSMR)的基因。在这里,我们报告了两个与常染色体隐性和X连锁NSMR相关的基因。首先,对法国近亲父母所生的两个同胞进行纯合性定位,从而鉴定出8p22-p23.1上的一个区域。该区间包含编码寡糖基转移酶(OTase)复合物一个亚基的N33/TUSC3基因,该复合物催化寡糖链在新生蛋白质上的转移,这是N-糖基化的关键步骤。对N33/TUSC3进行测序,发现一个1bp的插入,即c.787_788insC,导致过早的终止密码子p.N263fsX300,并导致mRNA降解。令人惊讶的是,对患者成纤维细胞的糖基化分析显示N-聚糖合成和转移正常,这表明在患者成纤维细胞中观察到的正常N-糖基化可能是由于功能补偿。随后,对X连锁的N33/TUSC3旁系同源基因IAP基因进行筛选,在一个患有X连锁NSMR的家族中鉴定出一个错义突变(c.932T→G,p.V311G)。最近对神经元细胞粘附糖蛋白的岩藻糖基化和多唾液酸修饰的研究表明,糖基化在突触可塑性中起关键作用。然而,我们的数据首次证明N-糖基化缺陷可导致NSMR。总之,我们的结果表明,OTase活性的精细调节对于正常认知功能发育至关重要,从而为理解MR的病理生理基础提供了进一步的见解。