Suppr超能文献

基于颗粒的多重检测技术与微流控技术之间的协同作用可能会使诊断更接近患者。

Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient.

作者信息

Derveaux S, Stubbe B G, Braeckmans K, Roelant C, Sato K, Demeester J, De Smedt S C

机构信息

Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium.

出版信息

Anal Bioanal Chem. 2008 Aug;391(7):2453-67. doi: 10.1007/s00216-008-2062-4. Epub 2008 May 6.

Abstract

In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick high-throughput assays. On the one hand, recent progress in microfluidics technologies is expected to strongly support the development of miniaturized analytical devices, which will speed up (bio)analytical assays. On the other hand, a higher throughput can be obtained by the simultaneous screening of one sample for multiple targets (multiplexing) by means of encoded particle-based assays. Multiplexing at the macro level is now common in research labs and is expected to become part of clinical diagnostics. This review aims to debate on the "added value" we can expect from (bio)analysis with particles in microfluidic devices. Technologies to (a) decode, (b) analyze, and (c) manipulate the particles are described. Special emphasis is placed on the challenges of integrating currently existing detection platforms for encoded microparticles into microdevices and on promising microtechnologies that could be used to down-scale the detection units in order to obtain compact miniaturized particle-based multiplexing platforms.

摘要

在医学诊断领域,对廉价、准确且快速的高通量检测方法的需求日益增长。一方面,微流控技术的最新进展有望大力支持小型化分析设备的开发,这将加速(生物)分析检测。另一方面,通过基于编码粒子的检测方法对一个样本同时进行多个目标物的筛选(多重检测),可以实现更高的通量。宏观层面的多重检测目前在研究实验室中很常见,并有望成为临床诊断的一部分。本综述旨在探讨我们可以从微流控设备中基于粒子的(生物)分析中期待的“附加值”。描述了用于(a)解码、(b)分析和(c)操控粒子的技术。特别强调了将当前现有的编码微粒子检测平台集成到微型设备中的挑战,以及可用于缩小检测单元规模以获得紧凑的基于粒子的小型化多重检测平台的有前景的微技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae2f/2516543/fff46c75445e/216_2008_2062_Fig1_HTML.jpg

相似文献

1
Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient.
Anal Bioanal Chem. 2008 Aug;391(7):2453-67. doi: 10.1007/s00216-008-2062-4. Epub 2008 May 6.
2
Micro- and nanotechnology in cell separation.
Int J Nanomedicine. 2006;1(1):3-14. doi: 10.2147/nano.2006.1.1.3.
3
Advances in the production and handling of encoded microparticles.
Lab Chip. 2014 Jul 7;14(13):2212-6. doi: 10.1039/c4lc90042a. Epub 2014 May 22.
4
Piezo- and solenoid valve-based liquid dispensing for miniaturized assays.
Assay Drug Dev Technol. 2005 Apr;3(2):189-202. doi: 10.1089/adt.2005.3.189.
5
Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics.
Adv Biochem Eng Biotechnol. 2022;179:247-265. doi: 10.1007/10_2020_127.
6
Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems.
Acc Chem Res. 2019 Aug 20;52(8):2113-2123. doi: 10.1021/acs.accounts.9b00192. Epub 2019 Jul 11.
7
A Review of the Application of Body-on-a-Chip for Drug Test and Its Latest Trend of Incorporating Barrier Tissue.
J Lab Autom. 2016 Oct;21(5):615-24. doi: 10.1177/2211068215619126. Epub 2015 Dec 2.
8
On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
Methods Mol Biol. 2017;1547:69-83. doi: 10.1007/978-1-4939-6734-6_6.
10
Micro-optics for microfluidic analytical applications.
Chem Soc Rev. 2018 Feb 19;47(4):1391-1458. doi: 10.1039/c5cs00649j.

引用本文的文献

1
Polymeric microbead arrays for microfluidic applications.
J Micromech Microeng. 2010 Nov;20(11). doi: 10.1088/0960-1317/20/11/115017. Epub 2010 Oct 15.
2
Lab on a Particle Technologies.
Anal Chem. 2024 May 21;96(20):7817-7839. doi: 10.1021/acs.analchem.4c01510. Epub 2024 Apr 22.
3
Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins.
Microfluid Nanofluidics. 2011;10(2):231-247. doi: 10.1007/s10404-010-0638-8. Epub 2010 Jun 2.
4
Transport of biomolecules to binding partners displayed on the surface of microbeads arrayed in traps in a microfluidic cell.
Biomicrofluidics. 2017 Jan 4;11(1):014101. doi: 10.1063/1.4973247. eCollection 2017 Jan.
5
Multiplex Immunoassays: Chips and Beads.
EJIFCC. 2010 Jan 26;20(4):162-5. eCollection 2010 Jan.
6
Development of a Microsphere-Based System to Facilitate Real-Time Insulin Monitoring.
J Diabetes Sci Technol. 2016 May 3;10(3):689-96. doi: 10.1177/1932296815625081. Print 2016 May.
7
Hydrogel microparticles for biosensing.
Eur Polym J. 2015 Nov;72:386-412. doi: 10.1016/j.eurpolymj.2015.02.022. Epub 2015 Feb 28.
9
Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection.
Chem Soc Rev. 2015 Aug 7;44(15):5552-95. doi: 10.1039/c4cs00382a. Epub 2015 May 29.
10
Salivary diagnostics using a portable point-of-service platform: a review.
Clin Ther. 2015 Mar 1;37(3):498-504. doi: 10.1016/j.clinthera.2015.02.004. Epub 2015 Feb 27.

本文引用的文献

1
Measurement of electroosmotic flow in capillary and microchip electrophoresis.
J Chromatogr A. 2007 Nov 2;1170(1-2):1-8. doi: 10.1016/j.chroma.2007.08.083. Epub 2007 Sep 12.
2
Multifunctional layer-by-layer coating of digitally encoded microparticles.
Langmuir. 2007 Sep 25;23(20):10272-9. doi: 10.1021/la701059z. Epub 2007 Aug 31.
3
Microfluidic platforms for lab-on-a-chip applications.
Lab Chip. 2007 Sep;7(9):1094-110. doi: 10.1039/b706364b. Epub 2007 Jul 27.
5
Bead-based immunoassays using a micro-chip flow cytometer.
Lab Chip. 2007 Aug;7(8):1048-56. doi: 10.1039/b707507n. Epub 2007 Jun 14.
7
Multifunctional encoded particles for high-throughput biomolecule analysis.
Science. 2007 Mar 9;315(5817):1393-6. doi: 10.1126/science.1134929.
8
Multiplexing molecular diagnostics and immunoassays using emerging microarray technologies.
Expert Rev Mol Diagn. 2007 Jan;7(1):87-98. doi: 10.1586/14737159.7.1.87.
9
Hybridization of DNA to bead-immobilized probes confined within a microfluidic channel.
Langmuir. 2006 Nov 21;22(24):10130-4. doi: 10.1021/la0616956.
10
Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip.
Lab Chip. 2006 Oct;6(10):1274-6. doi: 10.1039/b604676b. Epub 2006 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验