Suppr超能文献

MiRP1和DPP6β亚基对氟卡尼所致Kv4.3/KChIP2通道阻断作用的影响。

Effects of MiRP1 and DPP6 beta-subunits on the blockade induced by flecainide of Kv4.3/KChIP2 channels.

作者信息

Radicke S, Vaquero M, Caballero R, Gómez R, Núñez L, Tamargo J, Ravens U, Wettwer E, Delpón E

机构信息

Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.

出版信息

Br J Pharmacol. 2008 Jun;154(4):774-86. doi: 10.1038/bjp.2008.134. Epub 2008 Apr 21.

Abstract

BACKGROUND AND PURPOSE

The human cardiac transient outward potassium current (Ito) is believed to be composed of the pore-forming Kv4.3 alpha-subunit, coassembled with modulatory beta-subunits as KChIP2, MiRP1 and DPP6 proteins. beta-Subunits can alter the pharmacological response of Ito; therefore, we analysed the effects of flecainide on Kv4.3/KChIP2 channels coassembled with MiRP1 and/or DPP6 beta-subunits.

EXPERIMENTAL APPROACH

Currents were recorded in Chinese hamster ovary cells stably expressing K(V)4.3/KChIP2 channels, and transiently transfected with either MiRP1, DPP6 or both, using the whole-cell patch-clamp technique.

KEY RESULTS

In control conditions, Kv4.3/KChIP2/MiRP1 channels exhibited the slowest activation and inactivation kinetics and showed an 'overshoot' in the time course of recovery from inactivation. The midpoint values (Vh) of the activation and inactivation curves for Kv4.3/KChIP2/DPP6 and Kv4.3/KChIP2/MiRP1/DPP6 channels were approximately 10 mV more negative than Vh values for Kv4.3/KChIP2 and Kv4.3/KChIP2/MiRP1 channels. Flecainide (0.1-100 microM) produced a similar concentration-dependent blockade of total integrated current flow (IC50 approximately 10 microM) in all the channel complexes. However, the IC50 values for peak current amplitude and inactivated channel block were significantly different. Flecainide shifted the Vh values of both the activation and inactivation curves to more negative potentials and apparently accelerated inactivation kinetics in all channels. Moreover, flecainide slowed recovery from inactivation in all the channel complexes and suppressed the 'overshoot' in Kv4.3/KChIP2/MiRP1 channels.

CONCLUSIONS AND IMPLICATIONS

Flecainide directly binds to the Kv4.3 alpha-subunit when the channels are in the open and inactivated state and the presence of the beta-subunits modulates the blockade by altering the gating function.

摘要

背景与目的

人们认为人类心脏瞬时外向钾电流(Ito)由形成孔道的Kv4.3α亚基组成,它与作为KChIP2、MiRP1和DPP6蛋白的调节性β亚基共同组装。β亚基可改变Ito的药理反应;因此,我们分析了氟卡尼对与MiRP1和/或DPP6β亚基共同组装的Kv4.3/KChIP2通道的影响。

实验方法

采用全细胞膜片钳技术,在稳定表达K(V)4.3/KChIP2通道并瞬时转染MiRP1、DPP6或两者的中国仓鼠卵巢细胞中记录电流。

主要结果

在对照条件下,Kv4.3/KChIP2/MiRP1通道表现出最慢的激活和失活动力学,并且在失活恢复的时间进程中出现“超调”。Kv4.3/KChIP2/DPP6和Kv4.3/KChIP2/MiRP1/DPP6通道的激活和失活曲线的中点值(Vh)比Kv4.3/KChIP2和Kv4.3/KChIP2/MiRP1通道的Vh值负约10 mV。氟卡尼(0.1 - 100 μM)在所有通道复合物中对总积分电流产生类似的浓度依赖性阻断(IC50约为10 μM)。然而,峰值电流幅度和失活通道阻断的IC50值显著不同。氟卡尼使激活和失活曲线的Vh值向更负的电位移动,并明显加速了所有通道的失活动力学。此外,氟卡尼减缓了所有通道复合物中失活的恢复,并抑制了Kv4.3/KChIP2/MiRP1通道中的“超调”。

结论与启示

当通道处于开放和失活状态时,氟卡尼直接与Kv4.3α亚基结合,并且β亚基的存在通过改变门控功能来调节阻断作用。

相似文献

1
Effects of MiRP1 and DPP6 beta-subunits on the blockade induced by flecainide of Kv4.3/KChIP2 channels.
Br J Pharmacol. 2008 Jun;154(4):774-86. doi: 10.1038/bjp.2008.134. Epub 2008 Apr 21.
2
Regulation of Kv4.3 and hERG potassium channels by KChIP2 isoforms and DPP6 and response to the dual K channel activator NS3623.
Biochem Pharmacol. 2018 Apr;150:120-130. doi: 10.1016/j.bcp.2018.01.036. Epub 2018 Jan 31.
3
Effect of the I(to) activator NS5806 on cloned K(V)4 channels depends on the accessory protein KChIP2.
Br J Pharmacol. 2010 Aug;160(8):2028-44. doi: 10.1111/j.1476-5381.2010.00859.x.
4
Modulation of K4.3-KChIP2 Channels by IQM-266: Role of DPP6 and KCNE2.
Int J Mol Sci. 2022 Aug 15;23(16):9170. doi: 10.3390/ijms23169170.
5
Accessory subunits alter the temperature sensitivity of Kv4.3 channel complexes.
J Mol Cell Cardiol. 2013 Mar;56:8-18. doi: 10.1016/j.yjmcc.2012.12.017. Epub 2013 Jan 3.
6
The transmembrane beta-subunits KCNE1, KCNE2, and DPP6 modify pharmacological effects of the antiarrhythmic agent tedisamil on the transient outward current Ito.
Naunyn Schmiedebergs Arch Pharmacol. 2009 Jun;379(6):617-26. doi: 10.1007/s00210-008-0389-1. Epub 2009 Jan 20.
7
Interaction of ropivacaine with cloned cardiac Kv4.3/KChIP2.2 complexes.
Anesthesiology. 2004 Dec;101(6):1347-56. doi: 10.1097/00000542-200412000-00015.
8
9
10
Extracellular acidosis modulates drug block of Kv4.3 currents by flecainide and quinidine.
J Cardiovasc Electrophysiol. 2003 Jun;14(6):641-50. doi: 10.1046/j.1540-8167.2003.03026.x.

引用本文的文献

1
Kir2.1 mutations differentially increase the risk of flecainide proarrhythmia in Andersen Tawil Syndrome.
medRxiv. 2024 Dec 11:2024.12.10.24318629. doi: 10.1101/2024.12.10.24318629.
2
Identification of IQM-266, a Novel DREAM Ligand That Modulates K4 Currents.
Front Mol Neurosci. 2019 Feb 4;12:11. doi: 10.3389/fnmol.2019.00011. eCollection 2019.
4
Regulation of Kv4.3 and hERG potassium channels by KChIP2 isoforms and DPP6 and response to the dual K channel activator NS3623.
Biochem Pharmacol. 2018 Apr;150:120-130. doi: 10.1016/j.bcp.2018.01.036. Epub 2018 Jan 31.
5
Murine Electrophysiological Models of Cardiac Arrhythmogenesis.
Physiol Rev. 2017 Jan;97(1):283-409. doi: 10.1152/physrev.00007.2016.
7
Functional Characterization of Human Stem Cell-Derived Cardiomyocytes.
Curr Protoc Pharmacol. 2014;64:11.12.1-26. doi: 10.1002/0471141755.ph1112s64.
8
Cardiac and renal inward rectifier potassium channel pharmacology: emerging tools for integrative physiology and therapeutics.
Curr Opin Pharmacol. 2014 Apr;15:7-15. doi: 10.1016/j.coph.2013.11.002. Epub 2013 Nov 26.
9
Arrhythmogenic KCNE gene variants: current knowledge and future challenges.
Front Genet. 2014 Jan 24;5:3. doi: 10.3389/fgene.2014.00003. eCollection 2014.
10
Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency.
Cardiovasc Res. 2012 Sep 1;95(4):460-8. doi: 10.1093/cvr/cvs218. Epub 2012 Jul 3.

本文引用的文献

1
Effects of atorvastatin and simvastatin on atrial plateau currents.
J Mol Cell Cardiol. 2007 May;42(5):931-45. doi: 10.1016/j.yjmcc.2007.03.807. Epub 2007 Mar 19.
2
Guide to Receptors and Channels (GRAC), 2nd edition (2007 Revision).
Br J Pharmacol. 2007 Feb;150 Suppl 1(Suppl 1):S1-168. doi: 10.1038/sj.bjp.0707199.
3
Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits.
Nat Neurosci. 2007 Jan;10(1):32-9. doi: 10.1038/nn1822. Epub 2006 Dec 24.
4
A dipeptidyl aminopeptidase-like protein remodels gating charge dynamics in Kv4.2 channels.
J Gen Physiol. 2006 Dec;128(6):745-53. doi: 10.1085/jgp.200609668.
5
6
Molecular physiology of cardiac repolarization.
Physiol Rev. 2005 Oct;85(4):1205-53. doi: 10.1152/physrev.00002.2005.
7
Transmembrane interaction mediates complex formation between peptidase homologues and Kv4 channels.
Mol Cell Neurosci. 2005 Jun;29(2):320-32. doi: 10.1016/j.mcn.2005.02.003.
10
Diltiazem inhibits hKv1.5 and Kv4.3 currents at therapeutic concentrations.
Cardiovasc Res. 2004 Dec 1;64(3):457-66. doi: 10.1016/j.cardiores.2004.07.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验