Radicke S, Vaquero M, Caballero R, Gómez R, Núñez L, Tamargo J, Ravens U, Wettwer E, Delpón E
Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
Br J Pharmacol. 2008 Jun;154(4):774-86. doi: 10.1038/bjp.2008.134. Epub 2008 Apr 21.
The human cardiac transient outward potassium current (Ito) is believed to be composed of the pore-forming Kv4.3 alpha-subunit, coassembled with modulatory beta-subunits as KChIP2, MiRP1 and DPP6 proteins. beta-Subunits can alter the pharmacological response of Ito; therefore, we analysed the effects of flecainide on Kv4.3/KChIP2 channels coassembled with MiRP1 and/or DPP6 beta-subunits.
Currents were recorded in Chinese hamster ovary cells stably expressing K(V)4.3/KChIP2 channels, and transiently transfected with either MiRP1, DPP6 or both, using the whole-cell patch-clamp technique.
In control conditions, Kv4.3/KChIP2/MiRP1 channels exhibited the slowest activation and inactivation kinetics and showed an 'overshoot' in the time course of recovery from inactivation. The midpoint values (Vh) of the activation and inactivation curves for Kv4.3/KChIP2/DPP6 and Kv4.3/KChIP2/MiRP1/DPP6 channels were approximately 10 mV more negative than Vh values for Kv4.3/KChIP2 and Kv4.3/KChIP2/MiRP1 channels. Flecainide (0.1-100 microM) produced a similar concentration-dependent blockade of total integrated current flow (IC50 approximately 10 microM) in all the channel complexes. However, the IC50 values for peak current amplitude and inactivated channel block were significantly different. Flecainide shifted the Vh values of both the activation and inactivation curves to more negative potentials and apparently accelerated inactivation kinetics in all channels. Moreover, flecainide slowed recovery from inactivation in all the channel complexes and suppressed the 'overshoot' in Kv4.3/KChIP2/MiRP1 channels.
Flecainide directly binds to the Kv4.3 alpha-subunit when the channels are in the open and inactivated state and the presence of the beta-subunits modulates the blockade by altering the gating function.
人们认为人类心脏瞬时外向钾电流(Ito)由形成孔道的Kv4.3α亚基组成,它与作为KChIP2、MiRP1和DPP6蛋白的调节性β亚基共同组装。β亚基可改变Ito的药理反应;因此,我们分析了氟卡尼对与MiRP1和/或DPP6β亚基共同组装的Kv4.3/KChIP2通道的影响。
采用全细胞膜片钳技术,在稳定表达K(V)4.3/KChIP2通道并瞬时转染MiRP1、DPP6或两者的中国仓鼠卵巢细胞中记录电流。
在对照条件下,Kv4.3/KChIP2/MiRP1通道表现出最慢的激活和失活动力学,并且在失活恢复的时间进程中出现“超调”。Kv4.3/KChIP2/DPP6和Kv4.3/KChIP2/MiRP1/DPP6通道的激活和失活曲线的中点值(Vh)比Kv4.3/KChIP2和Kv4.3/KChIP2/MiRP1通道的Vh值负约10 mV。氟卡尼(0.1 - 100 μM)在所有通道复合物中对总积分电流产生类似的浓度依赖性阻断(IC50约为10 μM)。然而,峰值电流幅度和失活通道阻断的IC50值显著不同。氟卡尼使激活和失活曲线的Vh值向更负的电位移动,并明显加速了所有通道的失活动力学。此外,氟卡尼减缓了所有通道复合物中失活的恢复,并抑制了Kv4.3/KChIP2/MiRP1通道中的“超调”。
当通道处于开放和失活状态时,氟卡尼直接与Kv4.3α亚基结合,并且β亚基的存在通过改变门控功能来调节阻断作用。