Suppr超能文献

微阵列数据挖掘:一种基于优化的新型方法,用于揭示生物学上连贯的结构。

Microarray data mining: a novel optimization-based approach to uncover biologically coherent structures.

作者信息

Tan Meng P, Smith Erin N, Broach James R, Floudas Christodoulos A

机构信息

Department of Chemical Engineering, Princeton University, NJ, USA.

出版信息

BMC Bioinformatics. 2008 Jun 6;9:268. doi: 10.1186/1471-2105-9-268.

Abstract

BACKGROUND

DNA microarray technology allows for the measurement of genome-wide expression patterns. Within the resultant mass of data lies the problem of analyzing and presenting information on this genomic scale, and a first step towards the rapid and comprehensive interpretation of this data is gene clustering with respect to the expression patterns. Classifying genes into clusters can lead to interesting biological insights. In this study, we describe an iterative clustering approach to uncover biologically coherent structures from DNA microarray data based on a novel clustering algorithm EP_GOS_Clust.

RESULTS

We apply our proposed iterative algorithm to three sets of experimental DNA microarray data from experiments with the yeast Saccharomyces cerevisiae and show that the proposed iterative approach improves biological coherence. Comparison with other clustering techniques suggests that our iterative algorithm provides superior performance with regard to biological coherence. An important consequence of our approach is that an increasing proportion of genes find membership in clusters of high biological coherence and that the average cluster specificity improves.

CONCLUSION

The results from these clustering experiments provide a robust basis for extracting motifs and trans-acting factors that determine particular patterns of expression. In addition, the biological coherence of the clusters is iteratively assessed independently of the clustering. Thus, this method will not be severely impacted by functional annotations that are missing, inaccurate, or sparse.

摘要

背景

DNA微阵列技术能够测量全基因组的表达模式。在所得的大量数据中存在着在这种基因组规模上分析和呈现信息的问题,而朝着快速全面解释这些数据迈出的第一步是根据表达模式对基因进行聚类。将基因分类成簇能够带来有趣的生物学见解。在本研究中,我们描述了一种迭代聚类方法,该方法基于一种新颖的聚类算法EP_GOS_Clust从DNA微阵列数据中揭示生物学上连贯的结构。

结果

我们将我们提出的迭代算法应用于来自酿酒酵母实验的三组实验性DNA微阵列数据,并表明所提出的迭代方法提高了生物学连贯性。与其他聚类技术的比较表明,我们的迭代算法在生物学连贯性方面具有卓越的性能。我们方法的一个重要结果是,越来越多的基因归入具有高生物学连贯性的簇中,并且平均簇特异性得到提高。

结论

这些聚类实验的结果为提取决定特定表达模式的基序和顺式作用因子提供了坚实的基础。此外,独立于聚类对簇的生物学连贯性进行迭代评估。因此,该方法不会受到缺失、不准确或稀少的功能注释的严重影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/279f/2442101/24cbb2eeb321/1471-2105-9-268-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验