Suppr超能文献

水稻窄叶1基因发生突变,该基因编码一种新型蛋白质,会影响叶脉模式和生长素极性运输。

Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport.

作者信息

Qi Jing, Qian Qian, Bu Qingyun, Li Shuyu, Chen Qian, Sun Jiaqiang, Liang Wenxing, Zhou Yihua, Chu Chengcai, Li Xugang, Ren Fugang, Palme Klaus, Zhao Bingran, Chen Jinfeng, Chen Mingsheng, Li Chuanyou

机构信息

State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Plant Physiol. 2008 Aug;147(4):1947-59. doi: 10.1104/pp.108.118778. Epub 2008 Jun 18.

Abstract

The size and shape of the plant leaf is an important agronomic trait. To understand the molecular mechanism governing plant leaf shape, we characterized a classic rice (Oryza sativa) dwarf mutant named narrow leaf1 (nal1), which exhibits a characteristic phenotype of narrow leaves. In accordance with reduced leaf blade width, leaves of nal1 contain a decreased number of longitudinal veins. Anatomical investigations revealed that the culms of nal1 also show a defective vascular system, in which the number and distribution pattern of vascular bundles are altered. Map-based cloning and genetic complementation analyses demonstrated that Nal1 encodes a plant-specific protein with unknown biochemical function. We provide evidence showing that Nal1 is richly expressed in vascular tissues and that mutation of this gene leads to significantly reduced polar auxin transport capacity. These results indicate that Nal1 affects polar auxin transport as well as the vascular patterns of rice plants and plays an important role in the control of lateral leaf growth.

摘要

植物叶片的大小和形状是重要的农艺性状。为了解控制植物叶片形状的分子机制,我们对一个名为窄叶1(nal1)的经典水稻(Oryza sativa)矮化突变体进行了表征,该突变体表现出叶片狭窄的特征表型。与叶片宽度减小一致,nal1的叶片纵向叶脉数量减少。解剖学研究表明,nal1的茎秆也显示出维管系统缺陷,其中维管束的数量和分布模式发生了改变。基于图谱的克隆和遗传互补分析表明,Nal1编码一种具有未知生化功能的植物特异性蛋白。我们提供的证据表明,Nal1在维管组织中大量表达,该基因的突变导致极性生长素运输能力显著降低。这些结果表明,Nal1影响水稻植株的极性生长素运输以及维管模式,并在控制叶片侧向生长中起重要作用。

相似文献

1
Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport.
Plant Physiol. 2008 Aug;147(4):1947-59. doi: 10.1104/pp.108.118778. Epub 2008 Jun 18.
2
Narrow leaf 1 (NAL1) regulates leaf shape by affecting cell expansion in rice (Oryza sativa L.).
Biochem Biophys Res Commun. 2019 Aug 27;516(3):957-962. doi: 10.1016/j.bbrc.2019.06.142. Epub 2019 Jul 2.
3
The physiological mechanism of a drooping leaf2 mutation in rice.
Plant Sci. 2011 Jun;180(6):757-65. doi: 10.1016/j.plantsci.2011.03.001. Epub 2011 Mar 15.
4
Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.
PLoS One. 2015 Feb 6;10(2):e0118169. doi: 10.1371/journal.pone.0118169. eCollection 2015.
5
Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.
Genes Genet Syst. 2017 Mar 17;91(4):235-240. doi: 10.1266/ggs.16-00018. Epub 2016 Aug 12.
6
Characterization of dwarf and narrow leaf () mutant in rice.
Plant Signal Behav. 2021 Feb 1;16(2):1849490. doi: 10.1080/15592324.2020.1849490. Epub 2020 Dec 10.
8
The APC/CTAD1-WIDE LEAF 1-NARROW LEAF 1 pathway controls leaf width in rice.
Plant Cell. 2022 Oct 27;34(11):4313-4328. doi: 10.1093/plcell/koac232.
9
DWARF WITH SLENDER LEAF1 Encoding a Histone Deacetylase Plays Diverse Roles in Rice Development.
Plant Cell Physiol. 2020 Mar 1;61(3):457-469. doi: 10.1093/pcp/pcz210.

引用本文的文献

1
QTL-seq identifies NAL1 and OsOFP19 as additive regulators of tiller number in rice (Oryza sativa L.).
BMC Plant Biol. 2025 Sep 2;25(1):1185. doi: 10.1186/s12870-025-07239-6.
2
Phenotypic Identification and Fine-Mapping of the Rice Narrow-Leaf Mutant .
Plants (Basel). 2025 Aug 14;14(16):2528. doi: 10.3390/plants14162528.
3
TAC-C uncovers open chromatin interaction in crops and SPL-mediated photosynthesis regulation.
Sci Adv. 2025 May 30;11(22):eadu6565. doi: 10.1126/sciadv.adu6565.
4
NAL1 forms a molecular cage to regulate FZP phase separation.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2419961122. doi: 10.1073/pnas.2419961122. Epub 2025 Apr 9.
5
Rice grain size: current regulatory mechanisms and future perspectives.
J Plant Res. 2025 May;138(3):403-417. doi: 10.1007/s10265-025-01626-8. Epub 2025 Mar 8.
6
7
Characterization of QTLs for diameter in panicle neck and substitution mapping of and in rice ( L.).
Breed Sci. 2024 Sep;74(4):337-343. doi: 10.1270/jsbbs.23076. Epub 2024 Aug 14.
9
The genomic pattern of insertion/deletion variations during rice improvement.
BMC Genomics. 2024 Dec 31;25(1):1263. doi: 10.1186/s12864-024-11178-1.
10
The TaWAK2-TaNAL1-TaDST pathway regulates leaf width via cytokinin signaling in wheat.
Sci Adv. 2024 Aug 30;10(35):eadp5541. doi: 10.1126/sciadv.adp5541. Epub 2024 Aug 28.

本文引用的文献

1
Pattern formation in the vascular system of monocot and dicot plant species.
New Phytol. 2004 Nov;164(2):209-242. doi: 10.1111/j.1469-8137.2004.01191.x.
2
Leaf vasculature in Zea mays L.
Planta. 1985 Jul;164(4):448-58. doi: 10.1007/BF00395960.
3
LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.
Cell Res. 2007 May;17(5):402-10. doi: 10.1038/cr.2007.38.
4
Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity.
Genes Dev. 2006 Oct 15;20(20):2902-11. doi: 10.1101/gad.390806.
5
Auxin in action: signalling, transport and the control of plant growth and development.
Nat Rev Mol Cell Biol. 2006 Nov;7(11):847-59. doi: 10.1038/nrm2020. Epub 2006 Sep 20.
6
Polar auxin transport and patterning: grow with the flow.
Genes Dev. 2006 Apr 15;20(8):922-6. doi: 10.1101/gad.1426606.
7
PIN proteins perform a rate-limiting function in cellular auxin efflux.
Science. 2006 May 12;312(5775):914-8. doi: 10.1126/science.1123542. Epub 2006 Apr 6.
9
Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1.
Plant J. 2005 Oct;44(2):179-94. doi: 10.1111/j.1365-313X.2005.02519.x.
10
A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice.
Plant Cell Physiol. 2005 Oct;46(10):1674-81. doi: 10.1093/pcp/pci183. Epub 2005 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验