Hastings M H, Maywood E S, Reddy A B
Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK.
J Neuroendocrinol. 2008 Jun;20(6):812-9. doi: 10.1111/j.1365-2826.2008.01715.x.
Circadian rhythms coordinate our physiology at a fundamental level. Over the last 20 years, we have witnessed a paradigm shift in our perception of what the clocks driving such rhythms actually are, moving from 'black boxes' to talking about autoregulatory transcriptional/post-translational feedback loops with identified molecular components. We also now know that the pacemaker of the suprachiasmatic nuclei (SCN) is not our only clock but quite the opposite because circadian clocks abound in our bodies, driving local rhythms of cellular metabolism, and synchronised to each other and to solar time, by cues from the SCN. This discovery of dispersed local clocks has far-reaching implications for understanding our physiology and the pathological consequences of clock dysfunction, revealing that clocks are critical in a variety of metabolic and neurological conditions, all of which have long-term morbidity attributable to them. Without the currently available molecular framework, these insights would have not have been possible. In the circadian future, a growing appreciation of the systems-level functioning of these clocks and their various cerebral and visceral outputs, will likely stimulate the development of novel therapies for major illnesses.
昼夜节律在基础层面协调我们的生理机能。在过去20年里,我们见证了对于驱动此类节律的生物钟究竟是什么的认知发生了范式转变,从“黑匣子”转变为谈论具有明确分子成分的自动调节转录/翻译后反馈回路。我们现在还知道,视交叉上核(SCN)的起搏器并非我们唯一的生物钟,恰恰相反,因为我们体内存在大量昼夜节律钟,驱动着细胞代谢的局部节律,并通过来自SCN的信号相互同步以及与太阳时间同步。这种分散的局部生物钟的发现对于理解我们的生理机能以及生物钟功能障碍的病理后果具有深远意义,揭示了生物钟在各种代谢和神经疾病中至关重要,所有这些疾病都有可归因于它们的长期发病率。没有目前可用的分子框架,这些见解是不可能实现的。在昼夜节律的未来,对这些生物钟的系统水平功能及其各种大脑和内脏输出的日益了解,可能会刺激针对重大疾病的新疗法的开发。