Lewis Jared C, Bergman Robert G, Ellman Jonathan A
Department of Chemistry and Chemical Engineering, California Insitute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, USA.
Acc Chem Res. 2008 Aug;41(8):1013-25. doi: 10.1021/ar800042p. Epub 2008 Jul 11.
[Reaction: see text]. Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh- N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy 3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy 3) 2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. We demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, we developed conditions to directly arylate these heterocycles with aryl halides. Our initial conditions that used PCy 3 as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (phoban) that also facilitated the coupling of aryl bromides. We then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, we anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.
[反应:见正文]。氮杂环存在于许多具有重大实际意义的化合物中,从药物制剂、生物探针到电活性材料。通过C-H键活化对氮杂环进行直接官能团化是一种将各种带有不同官能团的取代基区域选择性地引入杂环骨架的有力方法。我们两个研究小组合作开发了一系列铑催化的杂环烷基化和芳基化反应,这些反应以其高度的官能团兼容性而著称。本综述介绍了我们在该领域的工作,重点阐述了相关的机理见解,这些见解推动了合成进展,并使所得转化反应有别于其他方法。我们最初发现了一种分子内铑催化的烯烃对唑类的C-2烷基化反应。该反应提供了获得多种二环、三环和四环唑衍生物的途径。然后我们开发了利用微波加热来加速这些反应的条件。在研究这种转化反应的机理时,我们发现一种新型的由底物衍生的铑-氮杂环卡宾(NHC)配合物作为中间体参与其中。然后我们通过用N-甲基苯并咪唑、3-甲基-3,4-二氢喹唑啉和1-甲基-1,4-苯并二氮杂䓬-2-酮处理中间体[RhCl(PCy₃)₂]的前体,直接合成了类似的铑-NHC配合物。广泛的动力学分析和密度泛函理论计算支持了一种卡宾形成的机理,即在C-H键发生分子内活化之前,催化活性的RhCl(PCy₃)₂片段与杂环配位。所得的Rh-H中间体最终互变异构为观察到的卡宾配合物。有了这些机理信息以及发现酸共催化剂能加速烷基化反应,我们开发了能使各种杂环,包括唑类、唑啉类、二氢喹唑啉类、吡啶类和喹啉类,与多种官能化烯烃进行高效分子间烷基化的条件。我们展示了该方法在天然产物、候选药物和其他生物活性分子合成中的实用性。此外,我们还开发了用芳基卤化物直接对这些杂环进行芳基化的条件。我们最初使用PCy₃作为配体的条件仅对芳基碘化物成功。然而,旨在避免催化剂分解的努力导致了基于9-磷杂双环[4.2.1]壬烷(phoban)的配体的开发,该配体也促进了芳基溴化物的偶联反应。然后我们使用更简单的四氢磷杂环庚烷配体复制了这种配合物独特的配位环境、稳定性和催化活性,并开发了在不使用手套箱或纯化试剂的情况下使带有各种官能团的芳基溴化物进行偶联反应的条件。通过进一步的机理探究,我们预计研究人员将更好地理解上述铑催化的C-H键官能团化反应的细节,从而设计出更高效、更稳定的催化剂,扩大底物范围,并实现新的转化反应。