Suppr超能文献

在人类核糖核酸酶(RNase)H2中鉴定出的致病突变对酵母RNase H2和古细菌RNase HII的活性及稳定性的影响。

Effect of the disease-causing mutations identified in human ribonuclease (RNase) H2 on the activities and stabilities of yeast RNase H2 and archaeal RNase HII.

作者信息

Rohman Muhammad S, Koga Yuichi, Takano Kazufumi, Chon Hyongi, Crouch Robert J, Kanaya Shigenori

机构信息

Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan.

出版信息

FEBS J. 2008 Oct;275(19):4836-49. doi: 10.1111/j.1742-4658.2008.06622.x. Epub 2008 Aug 21.

Abstract

Eukaryotic ribonuclease (RNase) H2 consists of one catalytic and two accessory subunits. Several single mutations in any one of these subunits of human RNase H2 cause Aicardi-Goutières syndrome. To examine whether these mutations affect the complex stability and activity of RNase H2, three mutant proteins of His-tagged Saccharomyces cerevisiae RNase H2 (Sc-RNase H2*) were constructed. Sc-G42S*, Sc-L52R*, and Sc-K46W* contain single mutations in Sc-Rnh2Ap*, Sc-Rnh2Bp*, and Sc-Rnh2Cp*, respectively. The genes encoding the three subunits were coexpressed in Escherichia coli, and Sc-RNase H2* and its derivatives were purified in a heterotrimeric form. All of these mutant proteins exhibited enzymatic activity. However, only the enzymatic activity of Sc-G42S* was greatly reduced compared to that of the wild-type protein. Gly42 is conserved as Gly10 in Thermococcus kodakareansis RNase HII. To analyze the role of this residue, four mutant proteins, Tk-G10S, Tk-G10A, Tk-G10L, and Tk-G10P, were constructed. All mutant proteins were less stable than the wild-type protein by 2.9-7.6 degrees C in T(m). A comparison of their enzymatic activities, substrate binding affinities, and CD spectra suggests that the introduction of a bulky side chain into this position induces a local conformational change, which is unfavorable for both activity and substrate binding. These results indicate that Gly10 is required to make the protein fully active and stable.

摘要

真核核糖核酸酶(RNase)H2由一个催化亚基和两个辅助亚基组成。人类RNase H2这些亚基中任何一个的几个单突变都会导致艾卡迪-古铁雷斯综合征。为了研究这些突变是否影响RNase H2的复合物稳定性和活性,构建了三种带有His标签的酿酒酵母RNase H2(Sc-RNase H2*)突变蛋白。Sc-G42S*、Sc-L52R和Sc-K46W分别在Sc-Rnh2Ap*、Sc-Rnh2Bp和Sc-Rnh2Cp中含有单突变。编码这三个亚基的基因在大肠杆菌中共表达,Sc-RNase H2及其衍生物以异源三聚体形式纯化。所有这些突变蛋白都表现出酶活性。然而,与野生型蛋白相比,只有Sc-G42S的酶活性大大降低。在嗜热栖热放线菌RNase HII中,Gly42保守为Gly10。为了分析该残基的作用,构建了四种突变蛋白,Tk-G10S、Tk-G10A、Tk-G10L和Tk-G10P。在熔点(Tm)时,所有突变蛋白的稳定性都比野生型蛋白低2.9-7.6摄氏度。对它们的酶活性、底物结合亲和力和圆二色光谱的比较表明,在该位置引入一个大的侧链会引起局部构象变化,这对活性和底物结合都不利。这些结果表明,Gly10是使蛋白质具有完全活性和稳定性所必需的。

相似文献

3
Hydrophobic effect on the stability and folding of a hyperthermophilic protein.
J Mol Biol. 2008 Apr 18;378(1):264-72. doi: 10.1016/j.jmb.2008.02.039. Epub 2008 Mar 4.
4
RNase H2 of Saccharomyces cerevisiae is a complex of three proteins.
Nucleic Acids Res. 2004 Jan 20;32(2):407-14. doi: 10.1093/nar/gkh209. Print 2004.
5
Kinetically robust monomeric protein from a hyperthermophile.
Biochemistry. 2004 Nov 2;43(43):13859-66. doi: 10.1021/bi0487645.
7
Ribonuclease H: the enzymes in eukaryotes.
FEBS J. 2009 Mar;276(6):1494-505. doi: 10.1111/j.1742-4658.2009.06908.x. Epub 2008 Feb 18.
8
Gene cloning and characterization of recombinant RNase HII from a hyperthermophilic archaeon.
J Bacteriol. 1998 Dec;180(23):6207-14. doi: 10.1128/JB.180.23.6207-6214.1998.
10
RNase H2 roles in genome integrity revealed by unlinking its activities.
Nucleic Acids Res. 2013 Mar 1;41(5):3130-43. doi: 10.1093/nar/gkt027. Epub 2013 Jan 25.

引用本文的文献

1
Distinct features of ribonucleotides within genomic DNA in Aicardi-Goutières syndrome ortholog mutants of .
iScience. 2024 May 16;27(6):110012. doi: 10.1016/j.isci.2024.110012. eCollection 2024 Jun 21.
2
Development of an RNase H2 Activity Assay for Clinical Screening.
J Clin Med. 2023 Feb 17;12(4):1598. doi: 10.3390/jcm12041598.
3
Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair.
Neuron. 2021 Dec 15;109(24):3962-3979.e6. doi: 10.1016/j.neuron.2021.09.040. Epub 2021 Oct 15.
4
Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair.
EMBO J. 2020 Feb 3;39(3):e102309. doi: 10.15252/embj.2019102309. Epub 2019 Dec 12.
5
Genome instability consequences of RNase H2 Aicardi-Goutières syndrome alleles.
DNA Repair (Amst). 2019 Dec;84:102614. doi: 10.1016/j.dnarep.2019.04.002. Epub 2019 Apr 4.
6
LINE-1 retrotransposons in healthy and diseased human brain.
Dev Neurobiol. 2018 May;78(5):434-455. doi: 10.1002/dneu.22567. Epub 2017 Dec 29.
9
RNase H2 roles in genome integrity revealed by unlinking its activities.
Nucleic Acids Res. 2013 Mar 1;41(5):3130-43. doi: 10.1093/nar/gkt027. Epub 2013 Jan 25.
10
Transcriptional responses to loss of RNase H2 in Saccharomyces cerevisiae.
DNA Repair (Amst). 2012 Dec 1;11(12):933-41. doi: 10.1016/j.dnarep.2012.09.006. Epub 2012 Oct 15.

本文引用的文献

2
Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription.
Mol Cell. 2007 Oct 26;28(2):264-76. doi: 10.1016/j.molcel.2007.08.015.
4
Clinical and molecular phenotype of Aicardi-Goutieres syndrome.
Am J Hum Genet. 2007 Oct;81(4):713-25. doi: 10.1086/521373. Epub 2007 Sep 4.
5
A hyperthermophilic protein acquires function at the cost of stability.
Biochemistry. 2006 Oct 24;45(42):12673-9. doi: 10.1021/bi060907v.
6
Crystal structure of the moloney murine leukemia virus RNase H domain.
J Virol. 2006 Sep;80(17):8379-89. doi: 10.1128/JVI.00750-06.
8
The spectrophotometric determination of tyrosine and tryptophan in proteins.
Biochem J. 1946;40(5-6):628-32. doi: 10.1042/bj0400628.
9
Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release.
EMBO J. 2006 May 3;25(9):1924-33. doi: 10.1038/sj.emboj.7601076. Epub 2006 Apr 6.
10
Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity.
Mol Cell. 2006 Apr 7;22(1):5-13. doi: 10.1016/j.molcel.2006.03.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验