Suppr超能文献

变形链球菌中irvR的特性研究,irvR是遗传转化能力和葡聚糖依赖性聚集所需的irvA依赖性途径的新型调控因子。

Characterization of irvR, a novel regulator of the irvA-dependent pathway required for genetic competence and dextran-dependent aggregation in Streptococcus mutans.

作者信息

Niu Guoqing, Okinaga Toshinori, Zhu Lin, Banas Jeffrey, Qi Felicia, Merritt Justin

机构信息

Department of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center BRC364, 975 NE 10th St., Oklahoma City, OK 73104-5419, USA.

出版信息

J Bacteriol. 2008 Nov;190(21):7268-74. doi: 10.1128/JB.00967-08. Epub 2008 Aug 29.

Abstract

Previous studies identified irvA as a normally repressed but highly inducible transcription regulator capable of repressing mutacin I gene expression in Streptococcus mutans. In this study, we aimed to identify and characterize the regulator(s) responsible for repressing the expression of irvA. An uncharacterized open reading frame (SMU.1398) located immediately adjacent to irvA and annotated as a putative transcription repressor was identified as a likely candidate. The results of mutation studies confirmed that the expression of irvA was greatly increased in the SMU.1398 background. Mutation of SMU.1398 ("irvR") abolished genetic competence and reduced the expression of the late competence genes/operons comEA, comY, and dprA without affecting the expression of the known competence regulators comC, comED, or comX. In addition, irvR was found to be a potent negative regulator of dextran-dependent aggregation (DDAG) and gbpC expression. Each of these irvR mutant phenotypes could be rescued with a double mutation of irvA or complemented by introducing a wild-type copy of irvR on a shuttle vector. These data indicate that the repression of irvA is critically dependent upon irvR and that irvA repression is essential for the development of genetic competence and the proper control of DDAG in S. mutans.

摘要

先前的研究确定irvA是一种通常被抑制但高度可诱导的转录调节因子,能够抑制变形链球菌中变链菌素I基因的表达。在本研究中,我们旨在鉴定和表征负责抑制irvA表达的调节因子。一个紧邻irvA且被注释为假定转录抑制因子的未表征开放阅读框(SMU.1398)被确定为可能的候选者。突变研究结果证实,在SMU.1398背景下,irvA的表达大幅增加。SMU.1398(“irvR”)的突变消除了遗传感受态,并降低了晚期感受态基因/操纵子comEA、comY和dprA的表达,而不影响已知感受态调节因子comC、comED或comX的表达。此外,发现irvR是葡聚糖依赖性聚集(DDAG)和gbpC表达的有效负调节因子。这些irvR突变表型中的每一种都可以通过irvA的双突变得到挽救,或者通过在穿梭载体上引入irvR的野生型拷贝来互补。这些数据表明,irvA的抑制关键取决于irvR,并且irvA的抑制对于变形链球菌遗传感受态的发展和DDAG的适当控制至关重要。

相似文献

2
Role of the Streptococcus mutans irvA gene in GbpC-independent, dextran-dependent aggregation and biofilm formation.
Appl Environ Microbiol. 2009 Nov;75(22):7037-43. doi: 10.1128/AEM.01015-09. Epub 2009 Sep 25.
4
IrvA-dependent and IrvA-independent pathways for mutacin gene regulation in Streptococcus mutans.
FEMS Microbiol Lett. 2006 Aug;261(2):231-4. doi: 10.1111/j.1574-6968.2006.00351.x.
5
SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.
Mol Oral Microbiol. 2018 Feb;33(1):47-58. doi: 10.1111/omi.12196. Epub 2017 Oct 11.
6
The Streptococcus mutans irvA gene encodes a trans-acting riboregulatory mRNA.
Mol Cell. 2015 Jan 8;57(1):179-90. doi: 10.1016/j.molcel.2014.11.003.
7
LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component.
Mol Microbiol. 2005 Aug;57(4):960-9. doi: 10.1111/j.1365-2958.2005.04733.x.
8
Core-gene-encoded peptide regulating virulence-associated traits in Streptococcus mutans.
J Bacteriol. 2013 Jun;195(12):2912-20. doi: 10.1128/JB.00189-13. Epub 2013 Apr 19.
9
Expression of an Extracellular Protein (SMU.63) Is Regulated by SprV in Streptococcus mutans.
Appl Environ Microbiol. 2020 Nov 24;86(24). doi: 10.1128/AEM.01647-20.
10
Cell density- and ComE-dependent expression of a group of mutacin and mutacin-like genes in Streptococcus mutans.
FEMS Microbiol Lett. 2006 Dec;265(1):11-7. doi: 10.1111/j.1574-6968.2006.00459.x. Epub 2006 Sep 19.

引用本文的文献

2
Ribosomal-processing cysteine protease homolog modulates glucan production and interkingdom interactions.
J Bacteriol. 2024 Jul 25;206(7):e0010424. doi: 10.1128/jb.00104-24. Epub 2024 Jun 20.
3
The transcription regulator BrsR serves as a network hub of natural competence protein-protein interactions in .
Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2106048118.
4
Characterization of FtsH Essentiality in Genetic Suppression.
Front Genet. 2021 Apr 27;12:659220. doi: 10.3389/fgene.2021.659220. eCollection 2021.
5
Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms.
NPJ Biofilms Microbiomes. 2020 Mar 27;6(1):17. doi: 10.1038/s41522-020-0128-z.
7
Genomewide Identification of Essential Genes and Fitness Determinants of UA159.
mSphere. 2018 Feb 7;3(1). doi: 10.1128/mSphere.00031-18. eCollection 2018 Jan-Feb.
8
Genome-Wide Screens Reveal New Gene Products That Influence Genetic Competence in Streptococcus mutans.
J Bacteriol. 2017 Dec 20;200(2). doi: 10.1128/JB.00508-17. Print 2018 Jan 15.
9
[Development of transcriptional regulators of Streptococcus mutans in cariogenic virulence].
Hua Xi Kou Qiang Yi Xue Za Zhi. 2016 Dec 1;34(6):643-646. doi: 10.7518/hxkq.2016.06.018.

本文引用的文献

1
Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation.
J Bacteriol. 2008 Jan;190(1):401-15. doi: 10.1128/JB.01086-07. Epub 2007 Nov 2.
2
Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans.
J Bacteriol. 2008 Jan;190(1):68-77. doi: 10.1128/JB.00990-07. Epub 2007 Oct 26.
4
Regulation of gbpC expression in Streptococcus mutans.
J Bacteriol. 2007 Sep;189(18):6521-31. doi: 10.1128/JB.00825-07. Epub 2007 Jul 6.
5
Comparative genome hybridization of Streptococcus mutans strains.
Oral Microbiol Immunol. 2007 Apr;22(2):103-10. doi: 10.1111/j.1399-302X.2007.00330.x.
6
Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria.
Mol Microbiol. 2007 Mar;63(5):1285-95. doi: 10.1111/j.1365-2958.2007.05598.x.
8
IrvA-dependent and IrvA-independent pathways for mutacin gene regulation in Streptococcus mutans.
FEMS Microbiol Lett. 2006 Aug;261(2):231-4. doi: 10.1111/j.1574-6968.2006.00351.x.
9
Induction of competence regulons as a general response to stress in gram-positive bacteria.
Annu Rev Microbiol. 2006;60:451-75. doi: 10.1146/annurev.micro.60.080805.142139.
10
A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis.
J Biol Chem. 2006 Aug 4;281(31):21720-21727. doi: 10.1074/jbc.M604071200. Epub 2006 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验