Suppr超能文献

清醒动物双光子成像快速运动伪影的自动校正

Automated correction of fast motion artifacts for two-photon imaging of awake animals.

作者信息

Greenberg David S, Kerr Jason N D

机构信息

Network Imaging Group, Max Planck Institute for Biological Cybernetics, Spemannstrasse 41, 72076 Tübingen, Germany.

出版信息

J Neurosci Methods. 2009 Jan 15;176(1):1-15. doi: 10.1016/j.jneumeth.2008.08.020. Epub 2008 Aug 26.

Abstract

Two-photon imaging of bulk-loaded calcium dyes can record action potentials (APs) simultaneously from dozens of spatially resolved neurons in vivo. Extending this technique to awake animals, however, has remained technically challenging due to artifacts caused by brain motion. Since in two-photon excitation microscopes image pixels are captured sequentially by scanning a focused pulsed laser across small areas of interest within the brain, fast displacements of the imaged area can distort the image nonuniformly. If left uncorrected, brain motion in awake animals will cause artifactual fluorescence changes, masking the small functional fluorescence increases associated with AP discharge. We therefore present a procedure for detection and correction of both fast and slow displacements in two-photon imaging of awake animals. Our algorithm, based on the Lucas-Kanade framework, operates directly on the motion-distorted imaging data, requiring neither external signals such as heartbeat nor a distortion-free template image. Motion correction accuracy was tested in silico over a wide range of simplified and realistic displacement trajectories and for multiple levels of fluorescence noise. Accuracy was confirmed in vivo by comparing solutions obtained from red and green fluorophores imaged simultaneously. Finally, the accuracy of AP detection from motion-displaced bulk-loaded calcium imaging is evaluated with and without motion correction, and we conclude that accurate motion correction as achieved by this procedure is both necessary and sufficient for single AP detection in awake animals.

摘要

对大量加载钙染料进行双光子成像能够在体内同时记录来自数十个空间分辨神经元的动作电位(APs)。然而,由于脑运动引起的伪影,将该技术扩展到清醒动物身上在技术上仍然具有挑战性。在双光子激发显微镜中,图像像素是通过在脑内的小感兴趣区域扫描聚焦脉冲激光依次捕获的,成像区域的快速位移会使图像产生不均匀的失真。如果不进行校正,清醒动物的脑运动会导致人为的荧光变化,掩盖与动作电位发放相关的微小功能性荧光增加。因此,我们提出了一种用于检测和校正清醒动物双光子成像中快速和慢速位移的方法。我们基于卢卡斯 - 卡纳德框架的算法直接对运动失真的成像数据进行操作,既不需要诸如心跳等外部信号,也不需要无失真的模板图像。在计算机模拟中,针对广泛的简化和实际位移轨迹以及多种荧光噪声水平测试了运动校正精度。通过比较同时成像的红色和绿色荧光团获得的结果在体内证实了精度。最后,评估了有无运动校正时从运动位移的大量加载钙成像中检测动作电位的准确性,我们得出结论,该方法所实现的精确运动校正在清醒动物的单个动作电位检测中既是必要的也是充分的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验