Villarroya Magda, Prado Silvia, Esteve Juan M, Soriano Miguel A, Aguado Carmen, Pérez-Martínez David, Martínez-Ferrandis José I, Yim Lucía, Victor Victor M, Cebolla Elvira, Montaner Asunción, Knecht Erwin, Armengod M-Eugenia
Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, Avenida Autopista del Saler, 16-3, 46012 Valencia, Spain.
Mol Cell Biol. 2008 Dec;28(24):7514-31. doi: 10.1128/MCB.00946-08. Epub 2008 Oct 13.
Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases.
人类GTPBP3是一种进化上保守的多结构域蛋白,参与线粒体tRNA修饰。表征其生化特性以及GTPBP3失活所赋予的表型对于理解该蛋白在tRNA成熟中的作用及其对线粒体呼吸的影响至关重要。我们发现,两种最丰富的GTPBP3同工型对鸟嘌呤核苷酸表现出中等亲和力,类似于它们的细菌同源物MnmE,尽管它们水解GTP的速率要低100倍。这表明,对MnmE的tRNA修饰功能至关重要的GTP酶活性的调节在GTPBP3中有所不同。事实上,钾诱导的G结构域二聚化会刺激MnmE中的GTP酶活性,但不会刺激GTPBP3中的GTP酶活性。GTPBP3的N末端结构域介导不依赖钾的二聚化,这似乎是该蛋白家族在进化上保守的特性,可能与修饰反应中一碳单位供体的结合位点的构建有关。小干扰RNA使GTPBP3部分失活会降低氧气消耗、ATP生成和线粒体蛋白质合成,而这些蛋白质的降解会略有增加。它还会导致线粒体膜电位缺陷和超氧化物水平升高。这些表型特征表明,GTPBP3缺陷有助于某些氧化磷酸化疾病的发病机制。