Suppr超能文献

基于光学相干断层扫描测厚成像的圆锥角膜诊断

Keratoconus diagnosis with optical coherence tomography pachymetry mapping.

作者信息

Li Yan, Meisler David M, Tang Maolong, Lu Ake T H, Thakrar Vishakha, Reiser Bibiana J, Huang David

机构信息

Center for Ophthalmic Optics and Lasers, Doheny Eye Institute and Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California 99033, USA.

出版信息

Ophthalmology. 2008 Dec;115(12):2159-66. doi: 10.1016/j.ophtha.2008.08.004. Epub 2008 Nov 5.

Abstract

OBJECTIVE

To detect abnormal corneal thinning in keratoconus using pachymetry maps measured by high-speed anterior segment optical coherence tomography (OCT).

DESIGN

Cross-sectional observational study.

PARTICIPANTS

Thirty-seven keratoconic eyes from 21 subjects and 36 eyes from 18 normal subjects.

METHODS

The OCT system operated at a 1.3 microm wavelength with a scan rate of 2000 axial scans per second. A pachymetry scan pattern (8 radials, 128 axial scans each; 10 mm diameter) centered at the corneal vertex was used to map the corneal thickness. The pachymetry map was divided into zones by octants and annular rings. Five pachymetric parameters were calculated from the region inside the 5 mm diameter: minimum, minimum-median, inferior-superior (I-S), inferotemporal-superonasal (IT-SN), and the vertical location of the thinnest cornea. The 1-percentile value of the normal group was used to define the diagnostic cutoff. Placido-ring-based corneal topography was obtained for comparison.

MAIN OUTCOME MEASURES

The OCT pachymetric parameters and a quantitative topographic keratoconus index (keratometry, I-S, astigmatism, and skew percentage [KISA%]) were used for keratoconus diagnosis. Diagnostic performance was assessed by the area under the receiver operating characteristic (AROC) curve.

RESULTS

Keratoconic corneas were thinner. The pachymetric minimum averaged 452.6+/-60.9 microm in keratoconic eyes versus 546+/-23.7 microm in normal eyes. The 1-percentile cutoff was 491.6 microm. The thinnest location was inferiorly displaced in keratoconus (-805+/-749 microm vs -118+/-260 microm; cutoff, -716 microm). The thinning was focal (minimum-median: -95.2+/-41.1 microm vs -45+/-7.7 microm; cutoff, -62.6 microm). Keratoconic maps were more asymmetric (I-S, -44.8+/-28.7 microm vs -9.9+/-9.3 microm; cutoff, -31.3 microm; and IT-SN, -63+/-35.7 microm vs -22+/-11.4 microm; cutoff, -48.2 microm). Keratoconic eyes had a higher KISA% index (2641+/-5024 vs 21+/-19). All differences were statistically significant (t test, P<0.0001). Applying the diagnostic criteria of any 1 OCT pachymetric parameter below the keratoconus cutoff yielded an AROC of 0.99, which was marginally better (P = .09) than the KISA% topographic index (AROC, 0.91).

CONCLUSIONS

Optical coherence tomography pachymetry maps accurately detected the characteristic abnormal corneal thinning in keratoconic eyes. This method was at least as sensitive and specific as the topographic KISA.

FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.

摘要

目的

使用高速眼前节光学相干断层扫描(OCT)测量的角膜厚度图检测圆锥角膜中的异常角膜变薄。

设计

横断面观察性研究。

参与者

21名受试者的37只圆锥角膜眼和18名正常受试者的36只眼睛。

方法

OCT系统在1.3微米波长下运行,扫描速率为每秒2000次轴向扫描。以角膜顶点为中心的角膜厚度扫描模式(8条径向线,每条128次轴向扫描;直径10毫米)用于绘制角膜厚度图。角膜厚度图按八分法和环形环分为多个区域。从直径5毫米范围内的区域计算五个角膜厚度参数:最小值、最小中位数、下-上(I-S)、颞下-鼻上(IT-SN)以及最薄角膜的垂直位置。正常组的第1百分位数用于定义诊断临界值。获取基于Placido环的角膜地形图以进行比较。

主要观察指标

OCT角膜厚度参数和定量地形学圆锥角膜指数(角膜曲率、I-S、散光和偏斜百分比[KISA%])用于圆锥角膜诊断。通过受试者操作特征(AROC)曲线下面积评估诊断性能。

结果

圆锥角膜更薄。圆锥角膜眼的角膜厚度最小值平均为452.6±60.9微米,而正常眼为546±23.7微米。第1百分位数临界值为491.6微米。圆锥角膜中最薄位置向下移位(-805±749微米对-118±260微米;临界值,-716微米)。变薄是局灶性的(最小-中位数:-95.2±41.1微米对-45±7.7微米;临界值,-62.6微米)。圆锥角膜图更不对称(I-S,-44.8±28.7微米对-9.9±9.3微米;临界值,-31.3微米;IT-SN,-63±35.7微米对-22±11.4微米;临界值,-48.2微米)。圆锥角膜眼的KISA%指数更高(2641±5024对21±19)。所有差异均具有统计学意义(t检验,P<0.0001)。应用任何1个OCT角膜厚度参数低于圆锥角膜临界值的诊断标准得出的AROC为0.99,略优于(P = 0.09)KISA%地形学指数(AROC,0.91)。

结论

光学相干断层扫描角膜厚度图准确检测到圆锥角膜眼中特征性的异常角膜变薄。该方法至少与地形学KISA一样敏感和特异。

财务披露

在参考文献之后可能会有专有或商业披露。

相似文献

1
Keratoconus diagnosis with optical coherence tomography pachymetry mapping.
Ophthalmology. 2008 Dec;115(12):2159-66. doi: 10.1016/j.ophtha.2008.08.004. Epub 2008 Nov 5.
3
Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes.
Ophthalmology. 2012 Dec;119(12):2425-33. doi: 10.1016/j.ophtha.2012.06.023. Epub 2012 Aug 20.
7
Systematic detection of keratoconus in OCT: corneal and epithelial thickness maps.
J Cataract Refract Surg. 2022 Dec 1;48(12):1360-1365. doi: 10.1097/j.jcrs.0000000000000990.
8
Corneal pachymetry mapping with high-speed optical coherence tomography.
Ophthalmology. 2006 May;113(5):792-9.e2. doi: 10.1016/j.ophtha.2006.01.048.
9
A Coincident Thinning Index for Keratoconus Identification Using OCT Pachymetry and Epithelial Thickness Maps.
J Refract Surg. 2020 Nov 1;36(11):757-765. doi: 10.3928/1081597X-20200925-01.
10
Keratoconus diagnosis with optical coherence tomography–based pachymetric scoring system.
J Cataract Refract Surg. 2013 Dec;39(12):1864-71. doi: 10.1016/j.jcrs.2013.05.048.

引用本文的文献

1
Capacity of health facilities to diagnose and manage keratoconus: a Kilimanjaro region case study.
Int Ophthalmol. 2025 Aug 4;45(1):322. doi: 10.1007/s10792-025-03653-9.
2
Bowman's layer and corneal thickness in health and disease.
BMJ Open Ophthalmol. 2025 May 22;10(1):e002167. doi: 10.1136/bmjophth-2025-002167.
3
Eccentric Pathology in Keratoconus Exhibits Stiffer Biomechanical Response than Central Pathology.
Ophthalmol Sci. 2024 Dec 20;5(3):100682. doi: 10.1016/j.xops.2024.100682. eCollection 2025 May-Jun.
4
Artificial Intelligence-Driven Detection of LASIK Using Corneal Optical Coherence Tomography Maps.
Transl Vis Sci Technol. 2025 Mar 3;14(3):17. doi: 10.1167/tvst.14.3.17.
5
Corneal Epithelial Thickness Mapping in Healthy Population Corneas Using MS-39 Anterior Segment Optical Coherence Tomography.
Clin Ophthalmol. 2025 Jan 22;19:249-259. doi: 10.2147/OPTH.S503195. eCollection 2025.
7
The role of corneal epithelial thickness map in detecting early keratoconus.
Graefes Arch Clin Exp Ophthalmol. 2025 Apr;263(4):1035-1044. doi: 10.1007/s00417-024-06682-9. Epub 2024 Nov 13.
9
Detecting Keratoconus in Adolescents with Anterior Segment Optical Coherence Tomography.
J Ophthalmol. 2024 Jun 7;2024:6655217. doi: 10.1155/2024/6655217. eCollection 2024.
10
Multi-modal imaging for the detection of early keratoconus: a narrative review.
Eye Vis (Lond). 2024 May 11;11(1):18. doi: 10.1186/s40662-024-00386-1.

本文引用的文献

1
Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography.
Ophthalmology. 2008 Aug;115(8):1352-7, 1357.e1-2. doi: 10.1016/j.ophtha.2008.01.011. Epub 2008 Jun 2.
2
Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis.
Ophthalmology. 2008 Jun;115(6):949-56. doi: 10.1016/j.ophtha.2007.08.011. Epub 2007 Nov 5.
3
Analysis of ectasia after laser in situ keratomileusis: risk factors.
J Cataract Refract Surg. 2007 Sep;33(9):1530-8. doi: 10.1016/j.jcrs.2007.04.043.
4
Risk assessment for ectasia after corneal refractive surgery.
Ophthalmology. 2008 Jan;115(1):37-50. doi: 10.1016/j.ophtha.2007.03.073. Epub 2007 Jul 12.
5
A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography.
Ophthalmology. 2007 Jun;114(6):1124-32. doi: 10.1016/j.ophtha.2006.09.031. Epub 2007 Feb 23.
6
High-speed optical coherence tomography of corneal opacities.
Ophthalmology. 2007 Jul;114(7):1278-85. doi: 10.1016/j.ophtha.2006.10.033. Epub 2007 Feb 20.
7
Evaluation of keratoconus in Asians: role of Orbscan II and Tomey TMS-2 corneal topography.
Am J Ophthalmol. 2007 Mar;143(3):390-400. doi: 10.1016/j.ajo.2006.11.030. Epub 2006 Dec 21.
8
Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus.
J Cataract Refract Surg. 2006 Nov;32(11):1851-9. doi: 10.1016/j.jcrs.2006.06.025.
9
Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography.
J Cataract Refract Surg. 2006 Nov;32(11):1843-50. doi: 10.1016/j.jcrs.2006.04.046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验