Suppr超能文献

单RNA计数揭示酵母基因表达的替代模式。

Single-RNA counting reveals alternative modes of gene expression in yeast.

作者信息

Zenklusen Daniel, Larson Daniel R, Singer Robert H

机构信息

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.

出版信息

Nat Struct Mol Biol. 2008 Dec;15(12):1263-71. doi: 10.1038/nsmb.1514. Epub 2008 Nov 16.

Abstract

Proper execution of transcriptional programs is a key requirement of gene expression regulation, demanding accurate control of timing and amplitude. How precisely the transcription machinery fulfills this task is not known. Using an in situ hybridization approach that detects single mRNA molecules, we measured mRNA abundance and transcriptional activity within single Saccharomyces cerevisiae cells. We found that expression levels for particular genes are higher than initially reported and can vary substantially among cells. However, variability for most constitutively expressed genes is unexpectedly small. Combining single-transcript measurements with computational modeling indicates that low expression variation is achieved by transcribing genes using single transcription-initiation events that are clearly separated in time, rather than by transcriptional bursts. In contrast, PDR5, a gene regulated by the transcription coactivator complex SAGA, is expressed using transcription bursts, resulting in larger variation. These data directly demonstrate the existence of multiple expression modes used to modulate the transcriptome.

摘要

转录程序的正确执行是基因表达调控的关键要求,需要对时间和幅度进行精确控制。转录机制如何精确完成这项任务尚不清楚。我们采用一种检测单个mRNA分子的原位杂交方法,测量了单个酿酒酵母细胞内的mRNA丰度和转录活性。我们发现,特定基因的表达水平高于最初报道的水平,并且在细胞之间可能有很大差异。然而,大多数组成型表达基因的变异性出乎意料地小。将单转录本测量与计算模型相结合表明,低表达变异是通过使用在时间上明显分开的单个转录起始事件转录基因来实现的,而不是通过转录爆发。相比之下,受转录共激活复合物SAGA调控的基因PDR5是通过转录爆发来表达的,导致更大的变异性。这些数据直接证明了用于调节转录组的多种表达模式的存在。

相似文献

1
Single-RNA counting reveals alternative modes of gene expression in yeast.
Nat Struct Mol Biol. 2008 Dec;15(12):1263-71. doi: 10.1038/nsmb.1514. Epub 2008 Nov 16.
3
The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally.
Epigenetics Chromatin. 2018 Mar 29;11(1):13. doi: 10.1186/s13072-018-0184-2.
4
5
SAGA Is a General Cofactor for RNA Polymerase II Transcription.
Mol Cell. 2017 Oct 5;68(1):130-143.e5. doi: 10.1016/j.molcel.2017.08.016. Epub 2017 Sep 14.
6
Multiplex RNA single molecule FISH of inducible mRNAs in single yeast cells.
Sci Data. 2019 Jun 17;6(1):94. doi: 10.1038/s41597-019-0106-6.
7
9
Sus1p facilitates pre-initiation complex formation at the SAGA-regulated genes independently of histone H2B de-ubiquitylation.
J Mol Biol. 2014 Aug 12;426(16):2928-2941. doi: 10.1016/j.jmb.2014.05.028. Epub 2014 Jun 6.
10

引用本文的文献

1
A conserved coupling of transcriptional ON and OFF periods underlies bursting dynamics.
Nat Struct Mol Biol. 2025 Jul 15. doi: 10.1038/s41594-025-01615-4.
2
NuclampFISH enables cell sorting based on nuclear RNA expression for chromatin analysis.
BMC Genomics. 2025 Jul 1;26(1):624. doi: 10.1186/s12864-025-11818-0.
3
The central pore of HIV-1 capsomers promotes sustained stability of the viral capsid.
bioRxiv. 2025 May 19:2025.05.19.654868. doi: 10.1101/2025.05.19.654868.
4
Regulation of RNA polymerase II transcription through re-initiation and bursting.
Mol Cell. 2025 May 15;85(10):1907-1919. doi: 10.1016/j.molcel.2025.04.011.
6
Genome-wide dynamic nascent transcript profiles reveal that most paused RNA polymerases terminate.
bioRxiv. 2025 Mar 28:2025.03.27.645809. doi: 10.1101/2025.03.27.645809.
9
Deterministic patterns in single-cell transcriptomic data.
NPJ Syst Biol Appl. 2025 Jan 11;11(1):6. doi: 10.1038/s41540-025-00490-5.
10
Predicting gene sequences with AI to study codon usage patterns.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2410003121. doi: 10.1073/pnas.2410003121. Epub 2024 Dec 31.

本文引用的文献

1
The dynamic range of transcription.
Mol Cell. 2008 Jun 6;30(5):545-6. doi: 10.1016/j.molcel.2008.05.009.
2
Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter.
Science. 2008 Jan 25;319(5862):466-9. doi: 10.1126/science.1150559.
3
Effects of molecular memory and bursting on fluctuations in gene expression.
Science. 2008 Jan 18;319(5861):339-43. doi: 10.1126/science.1144331.
4
The transcriptional cycle of HIV-1 in real-time and live cells.
J Cell Biol. 2007 Oct 22;179(2):291-304. doi: 10.1083/jcb.200706018.
5
In vivo dynamics of RNA polymerase II transcription.
Nat Struct Mol Biol. 2007 Sep;14(9):796-806. doi: 10.1038/nsmb1280. Epub 2007 Aug 5.
6
The nuclear envelope and transcriptional control.
Nat Rev Genet. 2007 Jul;8(7):507-17. doi: 10.1038/nrg2122. Epub 2007 Jun 5.
7
The role of chromatin during transcription.
Cell. 2007 Feb 23;128(4):707-19. doi: 10.1016/j.cell.2007.01.015.
8
Stochastic gene expression: from single molecules to the proteome.
Curr Opin Genet Dev. 2007 Apr;17(2):107-12. doi: 10.1016/j.gde.2007.02.007. Epub 2007 Feb 20.
9
Phenotypic consequences of promoter-mediated transcriptional noise.
Mol Cell. 2006 Dec 28;24(6):853-65. doi: 10.1016/j.molcel.2006.11.003.
10
Stochastic mRNA synthesis in mammalian cells.
PLoS Biol. 2006 Oct;4(10):e309. doi: 10.1371/journal.pbio.0040309.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验