Kivala Milan, Diederich François
Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg, HCI, Switzerland.
Acc Chem Res. 2009 Feb 17;42(2):235-48. doi: 10.1021/ar8001238.
Though investigated for decades, interest in push-pull chromophores (D-pi-A), strong electron donors (D) connected by pi-conjugating spacers to strong electron acceptors (A), continues to grow. Such chromophores are of substantial interest for optoelectronic devices such as waveguides. Also, strong donors and acceptors form bimolecular charge-transfer (CT) complexes and salts, some of which exhibit electrical conductivity and magnetic behavior. Furthermore, strong organic acceptors are increasingly explored as dopants in the fabrication of organic light-emitting diodes (OLEDs) and solar cells. This Account describes systematic efforts pursued over the past decade in our laboratory to generate new families of organic electron acceptors (A) and conjugate them via pi-spacers to electron donors (D) under formation of push-pull systems with intense intramolecular CT interactions and high third-order optical nonlinearities. First, we describe donor-acceptor-substituted tetraethynylethenes (TEEs). In these chromophores, the peripherally attached p-nitrophenyl acceptors and N,N-dimethylanilino donors behave as nearly independent redox centers. Acetylenic scaffolding using TEE building blocks produces large all-carbon sheets, such as perethynylated dehydroannulenes, expanded radialenes, and radiaannulenes with potent electron-acceptor properties. Arylated TEEs act as molecular switches allowing two-way photochemical interconversion that is not perturbed by thermal isomerization pathways. Upon sequential substitution of the acetylene moieties in TEEs, we formed another family of potent acceptors, the cyanoethynylethenes (CEEs). Donor-substituted CEEs are planar CT chromophores with very high third-order optical nonlinearities. Their high environmental stability allows for the formation of thin films by vapor-phase deposition. Through careful analysis of the physicochemical properties of CEEs, we established useful guidelines for evaluating and tuning the optical gap in strong push-pull chromophores: increasing the length of the pi-spacer in D-pi-A systems reduces ground-state D-A conjugation and lowers the HOMO-LUMO gap. By taking advantage of "click-chemistry"-type [2 + 2] cycloadditions of tetracyanoethene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) with appropriately activated alkynes, followed by retro-electrocyclization, the formation of donor-substituted 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs), 1,1,2,4,4-pentacyanobuta-1,3-dienes (PCBDs), and novel TCNQ adducts is possible. Some of these stable, nonplanar CT chromophores form high optical quality amorphous thin films by vapor-phase deposition. Despite donor substitution, the new acceptors (TCBDs, PCBDs, and the TCNQ adducts) rival TCNE and TCNQ in their ease for reversible electron uptake. High-yielding cycloaddition/retro-electrocyclization cascades provide access to multivalent, dendritic chromophores acting as "molecular batteries" with a remarkable capacity for multiple electron uptake in a narrow potential range. Finally, we used a one-pot protocol for electronically controlled consecutive TCNE and tetrathiafulvalene (TTF) additions to end-capped polyynes to form [AB]-type oligomers with a dendralene-type backbone.
尽管已研究了数十年,但人们对推挽发色团(D-π-A,即通过π共轭间隔基连接强电子供体(D)与强电子受体(A))的兴趣仍在不断增长。此类发色团对于诸如波导等光电器件具有重大意义。此外,强供体和受体可形成双分子电荷转移(CT)配合物和盐,其中一些表现出导电性和磁性行为。再者,强有机受体作为有机发光二极管(OLED)和太阳能电池制造中的掺杂剂正得到越来越多的探索。本综述介绍了我们实验室在过去十年中为生成新的有机电子受体(A)家族,并通过π间隔基将它们与电子供体(D)共轭,从而形成具有强烈分子内CT相互作用和高三阶光学非线性的推挽体系所做的系统性努力。首先,我们描述了供体-受体取代的四乙炔基乙烯(TEE)。在这些发色团中,外围连接的对硝基苯基受体和N,N-二甲基苯胺供体表现为几乎独立的氧化还原中心。使用TEE构建单元的乙炔骨架可生成大的全碳片层,例如全乙炔化的脱氢轮烯、扩展的轮烯和具有强电子受体性质的辐射轮烯。芳基化的TEE充当分子开关,可实现不受热异构化途径干扰的双向光化学互变。在依次取代TEE中的乙炔部分后,我们形成了另一类强受体,即氰基乙炔基乙烯(CEE)。供体取代的CEE是具有非常高的三阶光学非线性的平面CT发色团。它们的高环境稳定性使得可以通过气相沉积形成薄膜。通过仔细分析CEE的物理化学性质,我们建立了评估和调节强推挽发色团光学能隙的有用指导原则:增加D-π-A体系中π间隔基的长度会减少基态D-A共轭并降低HOMO-LUMO能隙。利用四氰基乙烯(TCNE)和7,7,8,8-四氰基对苯二醌二甲烷(TCNQ)与适当活化的炔烃的“点击化学”型[2 + 2]环加成反应,随后进行逆电环化反应,有可能形成供体取代的1,1,4,4-四氰基丁-1,3-二烯(TCBD)、1,1,2,4,4-五氰基丁-1,3-二烯(PCBD)以及新型TCNQ加合物。这些稳定的非平面CT发色团中的一些通过气相沉积形成高质量的非晶薄膜。尽管有供体取代,新的受体(TCBD、PCBD和TCNQ加合物)在可逆电子摄取的容易程度上可与TCNE和TCNQ相媲美。高产率的环加成/逆电环化级联反应提供了获得多价树枝状发色团的途径,这些发色团可作为“分子电池”,在狭窄的电位范围内具有显著的多电子摄取能力。最后,我们使用一锅法将电子控制的连续TCNE和四硫富瓦烯(TTF)加成到封端的多炔上,以形成具有双环戊二烯型主链的[AB]型低聚物。