Suppr超能文献

发动蛋白催化的膜裂变和囊泡释放的实时可视化

Real-time visualization of dynamin-catalyzed membrane fission and vesicle release.

作者信息

Pucadyil Thomas J, Schmid Sandra L

机构信息

Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

出版信息

Cell. 2008 Dec 26;135(7):1263-75. doi: 10.1016/j.cell.2008.11.020. Epub 2008 Dec 11.

Abstract

The GTPase dynamin assembles at the necks of budded vesicles in vivo and functions in membrane fission. We have developed fluid supported bilayers with excess membrane reservoir, (SUPER) templates, to assay vesicle formation and membrane fission. Consistent with previous studies, in the absence of GTP, dynamin assembles in spirals, forming long membrane tubules. GTP addition triggers disassembly, but not membrane fission, arguing against models in which fission is mediated by concerted and global GTP-driven conformational changes. In contrast, under physiological conditions in the constant presence of GTP, dynamin mediates membrane fission. Under these conditions, fluorescently labeled dynamin cooperatively organizes into self-limited assemblies that continuously cycle at the membrane and drive vesicle release. When visualized at the necks of emergent vesicles, self-limited dynamin assemblies display intensity fluctuations and persist for variable time periods before fission. Thus, self-limited assemblies of dynamin generated in the constant presence of GTP catalyze membrane fission.

摘要

GTP酶发动蛋白在体内芽生小泡的颈部组装,并在膜裂变中发挥作用。我们开发了具有过量膜储备的流体支撑双层膜(SUPER)模板,以检测小泡形成和膜裂变。与之前的研究一致,在没有GTP的情况下,发动蛋白呈螺旋状组装,形成长的膜小管。添加GTP会触发解体,但不会引发膜裂变,这与裂变由协同的全局GTP驱动的构象变化介导的模型相悖。相反,在生理条件下,持续存在GTP时,发动蛋白介导膜裂变。在这些条件下,荧光标记的发动蛋白协同组织成自我限制的组装体,这些组装体在膜上持续循环并驱动小泡释放。当在新生小泡的颈部观察时,自我限制的发动蛋白组装体显示出强度波动,并在裂变前持续不同的时间段。因此,在持续存在GTP的情况下产生的发动蛋白自我限制组装体催化膜裂变。

相似文献

1
Real-time visualization of dynamin-catalyzed membrane fission and vesicle release.
Cell. 2008 Dec 26;135(7):1263-75. doi: 10.1016/j.cell.2008.11.020. Epub 2008 Dec 11.
2
GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission.
Cell. 2008 Dec 26;135(7):1276-86. doi: 10.1016/j.cell.2008.11.028. Epub 2008 Dec 11.
3
Dynamin: functional design of a membrane fission catalyst.
Annu Rev Cell Dev Biol. 2011;27:79-105. doi: 10.1146/annurev-cellbio-100109-104016. Epub 2011 May 18.
4
Cryo-EM structures of membrane-bound dynamin in a post-hydrolysis state primed for membrane fission.
Dev Cell. 2024 Jul 22;59(14):1783-1793.e5. doi: 10.1016/j.devcel.2024.04.008. Epub 2024 Apr 24.
5
Dynamin-catalyzed membrane fission requires coordinated GTP hydrolysis.
PLoS One. 2013;8(1):e55691. doi: 10.1371/journal.pone.0055691. Epub 2013 Jan 31.
6
GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission.
Nature. 2006 May 25;441(7092):528-31. doi: 10.1038/nature04718. Epub 2006 Apr 30.
8
9
CtBP3/BARS drives membrane fission in dynamin-independent transport pathways.
Nat Cell Biol. 2005 Jun;7(6):570-80. doi: 10.1038/ncb1260. Epub 2005 May 8.
10
Dynamic remodeling of the dynamin helix during membrane constriction.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5449-5454. doi: 10.1073/pnas.1619578114. Epub 2017 May 8.

引用本文的文献

1
Drp1 Proteins Released from Hydrolysis-Driven Scaffold Disassembly Trigger Nucleotide-Dependent Membrane Remodeling to Promote Scission.
J Am Chem Soc. 2025 Jul 16;147(28):24248-24257. doi: 10.1021/jacs.4c15836. Epub 2025 Jul 8.
5
Dynamics of membrane tubulation coupled with fission by a two-component module.
Proc Natl Acad Sci U S A. 2024 May 14;121(20):e2402180121. doi: 10.1073/pnas.2402180121. Epub 2024 May 8.
6
Cryo-EM structures of membrane-bound dynamin in a post-hydrolysis state primed for membrane fission.
Dev Cell. 2024 Jul 22;59(14):1783-1793.e5. doi: 10.1016/j.devcel.2024.04.008. Epub 2024 Apr 24.
7
Self-organizing actin networks drive sequential endocytic protein recruitment and vesicle release on synthetic lipid bilayers.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2302622120. doi: 10.1073/pnas.2302622120. Epub 2023 May 22.
10
Dynamin2 functions as an accessory protein to reduce the rate of caveola internalization.
J Cell Biol. 2023 Apr 3;222(4). doi: 10.1083/jcb.202205122. Epub 2023 Feb 2.

本文引用的文献

1
Membrane curvature induced by Arf1-GTP is essential for vesicle formation.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11731-6. doi: 10.1073/pnas.0805182105. Epub 2008 Aug 8.
2
Membrane recognition by phospholipid-binding domains.
Nat Rev Mol Cell Biol. 2008 Feb;9(2):99-111. doi: 10.1038/nrm2328.
3
Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane.
EMBO J. 2008 Jan 9;27(1):27-37. doi: 10.1038/sj.emboj.7601961. Epub 2007 Dec 13.
4
The small G proteins of the Arf family and their regulators.
Annu Rev Cell Dev Biol. 2007;23:579-611. doi: 10.1146/annurev.cellbio.23.090506.123209.
5
Mechanisms of COPII vesicle formation and protein sorting.
FEBS Lett. 2007 May 22;581(11):2076-82. doi: 10.1016/j.febslet.2007.01.091. Epub 2007 Feb 14.
6
The dynamin middle domain is critical for tetramerization and higher-order self-assembly.
EMBO J. 2007 Jan 24;26(2):559-66. doi: 10.1038/sj.emboj.7601491. Epub 2006 Dec 14.
7
Membrane deformation by protein coats.
Curr Opin Cell Biol. 2006 Aug;18(4):386-94. doi: 10.1016/j.ceb.2006.06.003. Epub 2006 Jun 19.
8
GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission.
Nature. 2006 May 25;441(7092):528-31. doi: 10.1038/nature04718. Epub 2006 Apr 30.
9
Clathrin-coated vesicle formation from isolated plasma membranes.
Methods Enzymol. 2005;404:503-11. doi: 10.1016/S0076-6879(05)04044-9.
10
Robust colorimetric assays for dynamin's basal and stimulated GTPase activities.
Methods Enzymol. 2005;404:490-503. doi: 10.1016/S0076-6879(05)04043-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验