Suppr超能文献

在赢则停留迷宫任务表现期间纹状体与海马体的表征。

Striatal versus hippocampal representations during win-stay maze performance.

作者信息

Berke Joshua D, Breck Jason T, Eichenbaum Howard

机构信息

University of Michigan, Department of Psychology, Ann Arbor, MI 48109-1109, USA.

出版信息

J Neurophysiol. 2009 Mar;101(3):1575-87. doi: 10.1152/jn.91106.2008. Epub 2009 Jan 14.

Abstract

The striatum and hippocampus are widely held to be components of distinct memory systems that can guide competing behavioral strategies. However, some electrophysiological studies have suggested that neurons in both structures encode spatial information and may therefore make similar contributions to behavior. In rats well trained to perform a win-stay radial maze task, we recorded simultaneously from dorsal hippocampus and from multiple striatal subregions, including both lateral areas implicated in motor responses to cues and medial areas that work cooperatively with hippocampus in cognitive operations. In each brain region, movement through the maze was accompanied by the continuous sequential activation of sets of projection neurons. Hippocampal neurons overwhelmingly were active at a single spatial location (place cells). Striatal projection neurons were active at discrete points within the progression of every trial-especially during choices or following reward delivery-regardless of spatial position. Place-cell-type firing was not observed even for medial striatal cells entrained to the hippocampal theta rhythm. We also examined neural coding in earlier training sessions, when rats made use of spatial working memory to guide choices, and again found that striatal cells did not show place-cell-type firing. Prospective or retrospective encoding of trajectory was not observed in either hippocampus or striatum, at either training stage. Our results indicate that, at least in this task, dorsal hippocampus uses a spatial foundation for information processing that is not substantially modulated by spatial working memory demands. By contrast, striatal cells do not use such a spatial foundation, even in medial subregions that cooperate with hippocampus in the selection of spatial strategies. The progressive dominance of a striatum-dependent strategy does not appear to be accompanied by large changes in striatal or hippocampal single-cell representations, suggesting that the conflict between strategies may be resolved elsewhere.

摘要

纹状体和海马体被广泛认为是不同记忆系统的组成部分,它们能够引导相互竞争的行为策略。然而,一些电生理研究表明,这两个结构中的神经元都对空间信息进行编码,因此可能对行为做出类似的贡献。在经过良好训练以执行赢则停留放射状迷宫任务的大鼠中,我们同时记录了背侧海马体和多个纹状体亚区域的活动,这些亚区域包括与线索的运动反应相关的外侧区域以及在认知操作中与海马体协同工作的内侧区域。在每个脑区中,大鼠在迷宫中的移动都伴随着投射神经元组的连续顺序激活。海马体神经元绝大多数在单个空间位置活跃(位置细胞)。纹状体投射神经元在每次试验过程中的离散点活跃,尤其是在选择时或奖励发放后,而与空间位置无关。即使是与海马体θ节律同步的内侧纹状体细胞,也未观察到位置细胞类型的放电。我们还检查了早期训练阶段的神经编码情况,此时大鼠利用空间工作记忆来指导选择,结果再次发现纹状体细胞未表现出位置细胞类型的放电。在两个训练阶段,海马体和纹状体均未观察到对轨迹的前瞻性或回顾性编码。我们的结果表明,至少在这项任务中,背侧海马体使用空间基础进行信息处理,且该过程基本不受空间工作记忆需求的调节。相比之下,纹状体细胞即使在与海马体在空间策略选择中协同工作的内侧亚区域,也不使用这样的空间基础。依赖纹状体的策略逐渐占主导地位,但纹状体或海马体单细胞表征似乎并未发生大的变化,这表明策略之间的冲突可能在其他地方得到解决。

相似文献

1
Striatal versus hippocampal representations during win-stay maze performance.
J Neurophysiol. 2009 Mar;101(3):1575-87. doi: 10.1152/jn.91106.2008. Epub 2009 Jan 14.
3
Parallel processing across neural systems: implications for a multiple memory system hypothesis.
Neurobiol Learn Mem. 2004 Nov;82(3):278-98. doi: 10.1016/j.nlm.2004.07.007.
4
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience.
J Neurosci. 2016 Jun 15;36(24):6459-70. doi: 10.1523/JNEUROSCI.0840-16.2016.
5
Memory influences on hippocampal and striatal neural codes: effects of a shift between task rules.
Neurobiol Learn Mem. 2007 May;87(4):495-509. doi: 10.1016/j.nlm.2006.09.008. Epub 2007 Jan 19.
6
The Hippocampus and Dorsolateral Striatum Integrate Distinct Types of Memories through Time and Space, Respectively.
J Neurosci. 2020 Nov 18;40(47):9055-9065. doi: 10.1523/JNEUROSCI.1084-20.2020. Epub 2020 Oct 13.
8
Task-dependent encoding of space and events by striatal neurons is dependent on neural subtype.
Neuroscience. 2008 May 2;153(2):349-60. doi: 10.1016/j.neuroscience.2008.01.081. Epub 2008 Mar 4.
9
Context-dependent modulation by D(1) receptors: differential effects in hippocampus and striatum.
Behav Neurosci. 2006 Apr;120(2):377-92. doi: 10.1037/0735-7044.120.2.377.
10
Hippocampal place cells can encode multiple trial-dependent features through rate remapping.
J Neurosci. 2012 Oct 17;32(42):14752-66. doi: 10.1523/JNEUROSCI.6175-11.2012.

引用本文的文献

1
Error-driven changes in hippocampal representations accompany flexible re-learning.
bioRxiv. 2025 May 21:2025.05.20.655046. doi: 10.1101/2025.05.20.655046.
2
Dynamic imbalances in cell-type specific striatal ensemble activity during visually guided locomotion.
bioRxiv. 2024 Oct 30:2024.10.29.620847. doi: 10.1101/2024.10.29.620847.
3
Working memory features are embedded in hippocampal place fields.
Cell Rep. 2024 Mar 26;43(3):113807. doi: 10.1016/j.celrep.2024.113807. Epub 2024 Feb 23.
4
Temporal context and latent state inference in the hippocampal splitter signal.
Elife. 2023 Jan 9;12:e82357. doi: 10.7554/eLife.82357.
5
Multidimensional encoding of movement and contextual variables by rat globus pallidus neurons during a novel environment exposure task.
iScience. 2022 Aug 28;25(9):105024. doi: 10.1016/j.isci.2022.105024. eCollection 2022 Sep 16.
6
Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping.
Neuron. 2022 May 4;110(9):1547-1558.e8. doi: 10.1016/j.neuron.2022.02.002. Epub 2022 Feb 17.
7
The learning of prospective and retrospective cognitive maps within neural circuits.
Neuron. 2021 Nov 17;109(22):3552-3575. doi: 10.1016/j.neuron.2021.09.034. Epub 2021 Oct 21.
8
Potential roles of the rodent medial prefrontal cortex in conflict resolution between multiple decision-making systems.
Int Rev Neurobiol. 2021;158:249-281. doi: 10.1016/bs.irn.2020.11.009. Epub 2020 Dec 29.
9
A general model of hippocampal and dorsal striatal learning and decision making.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31427-31437. doi: 10.1073/pnas.2007981117. Epub 2020 Nov 23.

本文引用的文献

1
Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance.
J Neurosci. 2008 Oct 1;28(40):10075-80. doi: 10.1523/JNEUROSCI.2192-08.2008.
2
Task-dependent encoding of space and events by striatal neurons is dependent on neural subtype.
Neuroscience. 2008 May 2;153(2):349-60. doi: 10.1016/j.neuroscience.2008.01.081. Epub 2008 Mar 4.
3
Action and outcome encoding in the primate caudate nucleus.
J Neurosci. 2007 Dec 26;27(52):14502-14. doi: 10.1523/JNEUROSCI.3060-07.2007.
4
Hippocampal CA1 place cells encode intended destination on a maze with multiple choice points.
J Neurosci. 2007 Sep 5;27(36):9769-79. doi: 10.1523/JNEUROSCI.2011-07.2007.
5
Efficient reinforcement learning: computational theories, neuroscience and robotics.
Curr Opin Neurobiol. 2007 Apr;17(2):205-12. doi: 10.1016/j.conb.2007.03.004. Epub 2007 Mar 19.
6
Changes in activity of the striatum during formation of a motor habit.
Eur J Neurosci. 2007 Feb;25(4):1212-27. doi: 10.1111/j.1460-9568.2007.05353.x.
8
Memory influences on hippocampal and striatal neural codes: effects of a shift between task rules.
Neurobiol Learn Mem. 2007 May;87(4):495-509. doi: 10.1016/j.nlm.2006.09.008. Epub 2007 Jan 19.
10
The role of the basal ganglia in habit formation.
Nat Rev Neurosci. 2006 Jun;7(6):464-76. doi: 10.1038/nrn1919.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验