Suppr超能文献

含SH2结构域的蛋白酪氨酸磷酸酶通过两个“旁门”半胱氨酸进行氧化还原调节

Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.

作者信息

Chen Cheng-Yu, Willard Devina, Rudolph Johannes

机构信息

Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA.

出版信息

Biochemistry. 2009 Feb 17;48(6):1399-409. doi: 10.1021/bi801973z.

Abstract

Protein tyrosine phosphatases (PTPs) are known to be regulated by phosphorylation, localization, and protein-protein interactions. More recently, redox-dependent inactivation has emerged as a critical factor in attenuating PTP activity in response to cellular stimuli. The tandem Src homology 2 domain-containing PTPs (SHPs) belong to the family of nonreceptor PTPs whose activity can be modulated by reversible oxidation in vivo. Herein we have investigated in vitro the kinetic and mechanistic details of reversible oxidation of SHP-1 and SHP-2. We have confirmed the susceptibility of the active site cysteines of SHPs to oxidative inactivation, with rate constants for oxidation similar to other PTPs (2-10 M(-1) s(-1)). Both SHP-1 and SHP-2 can be reduced and reactivated with the reductants DTT and gluthathione, whereas only the catalytic domain of SHP-2 is subject to reactivation by thioredoxin. Stabilization of the reversible oxidation state of the SHPs proceeds via a novel mechanism unlike for other PTPs wherein oxidation yields either a disulfide between the catalytic cysteine and a nearby "backdoor" cysteine or a sulfenylamide bond with the amide backbone nitrogen of the adjacent amino acid. Instead, in the reversibly oxidized and inactivated SHPs, the catalytic cysteine is rereduced while two conserved backdoor cysteines form an intramolecular disulfide. Formation of this backdoor-backdoor disulfide is dependent on the presence of the active site cysteine and can proceed via either active site cysteine-backdoor cysteine intermediate. Removal of both backdoor cysteines leads to irreversible oxidative inactivation, demonstrating that these two cysteines are necessary and sufficient for ensuring reversible oxidation of the SHPs. Our results extend the mechanisms by which redox regulation of PTPs is used to modulate intracellular signaling pathways.

摘要

已知蛋白酪氨酸磷酸酶(PTP)受磷酸化、定位及蛋白质-蛋白质相互作用的调控。最近,氧化还原依赖性失活已成为细胞受到刺激时减弱PTP活性的关键因素。含串联Src同源2结构域的PTP(SHP)属于非受体PTP家族,其活性在体内可通过可逆氧化进行调节。在此,我们在体外研究了SHP-1和SHP-2可逆氧化的动力学及机制细节。我们已证实SHP活性位点半胱氨酸对氧化失活敏感,其氧化速率常数与其他PTP相似(2 - 10 M⁻¹ s⁻¹)。SHP-1和SHP-2均可被还原剂二硫苏糖醇(DTT)和谷胱甘肽还原并重新激活,而只有SHP-2的催化结构域可被硫氧还蛋白重新激活。与其他PTP不同,SHP可逆氧化状态的稳定通过一种新机制进行,在其他PTP中,氧化会在催化半胱氨酸与附近“后门”半胱氨酸之间产生二硫键,或与相邻氨基酸的酰胺主链氮形成亚磺酰胺键。相反,在可逆氧化且失活的SHP中,催化半胱氨酸被再次还原,而两个保守的后门半胱氨酸形成分子内二硫键。这种后门-后门二硫键的形成依赖于活性位点半胱氨酸的存在,并且可以通过活性位点半胱氨酸-后门半胱氨酸中间体进行。去除两个后门半胱氨酸会导致不可逆的氧化失活,表明这两个半胱氨酸对于确保SHP的可逆氧化是必要且充分的。我们的结果扩展了利用PTP的氧化还原调节来调控细胞内信号通路的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验