Suppr超能文献

春雷霉素诱导的一种意外类型的核糖体:窥探蛋白质合成的远古时代?

An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis?

作者信息

Kaberdina Anna Chao, Szaflarski Witold, Nierhaus Knud H, Moll Isabella

机构信息

Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, Vienna, Austria.

出版信息

Mol Cell. 2009 Jan 30;33(2):227-36. doi: 10.1016/j.molcel.2008.12.014.

Abstract

Translation of leaderless mRNAs, lacking ribosomal recruitment signals other than the 5'-terminal AUG-initiating codon, occurs in all three domains of life. Contemporary leaderless mRNAs may therefore be viewed as molecular fossils resembling ancestral mRNAs. Here, we analyzed the phenomenon of sustained translation of a leaderless mRNA in the presence of the antibiotic kasugamycin. Unexpected from the known in vitro effects of the drug, kasugamycin induced the formation of stable approximately 61S ribosomes in vivo, which were proficient in selectively translating leaderless mRNA. 61S particles are devoid of more than six proteins of the small subunit, including the functionally important proteins S1 and S12. The lack of these proteins could be reconciled with structural changes in the 16S rRNA. These studies provide in vivo evidence for the functionality of ribosomes devoid of multiple proteins and shed light on the evolutionary history of ribosomes.

摘要

缺乏除5'-末端AUG起始密码子之外的核糖体招募信号的无领导mRNA的翻译发生在生命的所有三个域中。因此,当代的无领导mRNA可以被视为类似于祖先mRNA的分子化石。在这里,我们分析了在抗生素春日霉素存在下无领导mRNA持续翻译的现象。与该药物已知的体外效应不同,春日霉素在体内诱导形成稳定的约61S核糖体,其能够选择性地翻译无领导mRNA。61S颗粒缺少小亚基的六种以上蛋白质,包括功能重要的蛋白质S1和S12。这些蛋白质的缺失可以与16S rRNA的结构变化相协调。这些研究为缺乏多种蛋白质的核糖体的功能提供了体内证据,并揭示了核糖体的进化历史。

相似文献

1
An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis?
Mol Cell. 2009 Jan 30;33(2):227-36. doi: 10.1016/j.molcel.2008.12.014.
2
Differential inhibition of 30S and 70S translation initiation complexes on leaderless mRNA by kasugamycin.
Biochem Biophys Res Commun. 2002 Oct 4;297(4):1021-1026. doi: 10.1016/s0006-291x(02)02333-1.
3
Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli.
Cell. 2011 Sep 30;147(1):147-57. doi: 10.1016/j.cell.2011.07.047. Epub 2011 Sep 22.
4
Trapping the ribosome to control gene expression.
Cell. 2007 Sep 21;130(6):983-5. doi: 10.1016/j.cell.2007.09.002.
5
Less is more for leaderless mRNA translation.
Mol Cell. 2009 Jan 30;33(2):141-2. doi: 10.1016/j.molcel.2009.01.006.
6
Role of Ribosomal Protein bS1 in Orthogonal mRNA Start Codon Selection.
Biochemistry. 2025 Feb 4;64(3):710-718. doi: 10.1021/acs.biochem.4c00688. Epub 2025 Jan 24.
7
A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA.
Science. 1997 Aug 29;277(5330):1262-7. doi: 10.1126/science.277.5330.1262.
8
Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control.
Mol Microbiol. 2002 Jan;43(1):239-46. doi: 10.1046/j.1365-2958.2002.02739.x.
9
Temperature-dependent translation of leaderless and canonical mRNAs in Escherichia coli.
FEMS Microbiol Lett. 2002 Jun 4;211(2):161-7. doi: 10.1111/j.1574-6968.2002.tb11219.x.

引用本文的文献

1
Bacterial ribosome heterogeneity facilitates rapid response to stress.
J Bacteriol. 2025 Jun 24;207(6):e0005825. doi: 10.1128/jb.00058-25. Epub 2025 Jun 3.
3
The Beak of Eukaryotic Ribosomes: Life, Work and Miracles.
Biomolecules. 2024 Jul 22;14(7):882. doi: 10.3390/biom14070882.
4
Pseudouridine Synthase RsuA Confers a Survival Advantage to Bacteria under Streptomycin Stress.
Antibiotics (Basel). 2023 Sep 14;12(9):1447. doi: 10.3390/antibiotics12091447.
5
In vivo structure probing of RNA in : novel insights into the ribosome structure of .
RNA. 2023 Oct;29(10):1610-1620. doi: 10.1261/rna.079687.123. Epub 2023 Jul 25.
6
Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research.
Methods Mol Biol. 2023;2601:363-378. doi: 10.1007/978-1-0716-2855-3_20.
7
Cell-Based Fluorescent Screen Amenable to HTS to Identify Inhibitors of Bacterial Translation Initiation.
Methods Mol Biol. 2023;2601:303-312. doi: 10.1007/978-1-0716-2855-3_16.
8
StartLink and StartLink+: Prediction of Gene Starts in Prokaryotic Genomes.
Front Bioinform. 2021 Dec 9;1:704157. doi: 10.3389/fbinf.2021.704157. eCollection 2021.
9
Regulation of Leaderless mRNA Translation in Bacteria.
Microorganisms. 2022 Mar 28;10(4):723. doi: 10.3390/microorganisms10040723.

本文引用的文献

1
A structural understanding of the dynamic ribosome machine.
Nat Rev Mol Cell Biol. 2008 Mar;9(3):242-53. doi: 10.1038/nrm2352.
3
Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.
J Mol Biol. 2007 Dec 7;374(4):1065-76. doi: 10.1016/j.jmb.2007.10.003. Epub 2007 Oct 6.
4
The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation.
Nat Struct Mol Biol. 2006 Oct;13(10):871-8. doi: 10.1038/nsmb1145. Epub 2006 Sep 24.
5
Structural analysis of kasugamycin inhibition of translation.
Nat Struct Mol Biol. 2006 Oct;13(10):879-86. doi: 10.1038/nsmb1150. Epub 2006 Sep 24.
6
The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit.
Arch Biochem Biophys. 2006 May 15;449(1-2):57-63. doi: 10.1016/j.abb.2006.02.028. Epub 2006 Mar 29.
7
Ribosomal proteins in the spotlight.
Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):243-67. doi: 10.1080/10409230500256523.
8
Solution probing of metal ion binding by helix 27 from Escherichia coli 16S rRNA.
RNA. 2005 Nov;11(11):1688-700. doi: 10.1261/rna.2940705.
9
Initiation of protein synthesis in bacteria.
Microbiol Mol Biol Rev. 2005 Mar;69(1):101-23. doi: 10.1128/MMBR.69.1.101-123.2005.
10
Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs.
Nucleic Acids Res. 2004 Jun 23;32(11):3354-63. doi: 10.1093/nar/gkh663. Print 2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验