Suppr超能文献

LMNA在脂肪组织中的作用:基于邓尼根式家族性部分脂肪营养不良突变的新型脂肪营养不良小鼠模型。

The role of LMNA in adipose: a novel mouse model of lipodystrophy based on the Dunnigan-type familial partial lipodystrophy mutation.

作者信息

Wojtanik Kari M, Edgemon Keith, Viswanadha Srikant, Lindsey Brigette, Haluzik Martin, Chen Weiping, Poy George, Reitman Marc, Londos Constantine

机构信息

Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Lipid Res. 2009 Jun;50(6):1068-79. doi: 10.1194/jlr.M800491-JLR200. Epub 2009 Feb 5.

Abstract

We investigated the role of LMNA in adipose tissue by developing a novel mouse model of lipodystrophy. Transgenic mice were generated that express the LMNA mutation that causes familial partial lipodystrophy of the Dunnigan type (FPLD2). The phenotype observed in FPLD-transgenic mice resembles many of the features of human FPLD2, including lack of fat accumulation, insulin resistance, and enlarged, fatty liver. Similar to the human disease, FPLD-transgenic mice appear to develop normally, but after several weeks they are unable to accumulate fat to the same extent as their wild-type littermates. One poorly understood aspect of lipodystrophies is the mechanism of fat loss. To this end, we have examined the effects of the FPLD2 mutation on fat cell function. Contrary to the current literature, which suggests FPLD2 results in a loss of fat, we found that the key mechanism contributing to the lack of fat accumulation involves not a loss, but an apparent inability of the adipose tissue to renew itself. Specifically, preadipocytes are unable to differentiate into mature and fully functional adipocytes. These findings provide insights not only for the treatment of lipodystrophies, but also for the study of adipogenesis, obesity, and insulin resistance.

摘要

我们通过构建一种新型脂肪营养不良小鼠模型,研究了核纤层蛋白A/C(LMNA)在脂肪组织中的作用。我们培育出了表达导致邓尼根型家族性部分脂肪营养不良(FPLD2)的LMNA突变体的转基因小鼠。在FPLD转基因小鼠中观察到的表型与人类FPLD2的许多特征相似,包括脂肪堆积缺失、胰岛素抵抗以及肝脏肿大和脂肪肝。与人类疾病相似,FPLD转基因小鼠似乎正常发育,但几周后它们无法像同窝野生型小鼠那样积累同等程度的脂肪。脂肪营养不良一个尚未完全理解的方面是脂肪流失的机制。为此,我们研究了FPLD2突变对脂肪细胞功能的影响。与目前认为FPLD2导致脂肪流失的文献相反,我们发现导致脂肪堆积缺失的关键机制并非脂肪流失,而是脂肪组织明显无法自我更新。具体而言,前脂肪细胞无法分化为成熟且功能完全的脂肪细胞。这些发现不仅为脂肪营养不良的治疗提供了思路,也为脂肪生成、肥胖和胰岛素抵抗的研究提供了启示。

相似文献

2
FPLD2 LMNA mutation R482W dysregulates iPSC-derived adipocyte function and lipid metabolism.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):254-260. doi: 10.1016/j.bbrc.2017.11.008. Epub 2017 Nov 3.
3
Adipocyte-Specific Deletion of Lamin A/C Largely Models Human Familial Partial Lipodystrophy Type 2.
Diabetes. 2021 Sep;70(9):1970-1984. doi: 10.2337/db20-1001. Epub 2021 Jun 4.
7
Itm2a silencing rescues lamin A mediated inhibition of 3T3-L1 adipocyte differentiation.
Adipocyte. 2017 Oct 2;6(4):259-276. doi: 10.1080/21623945.2017.1362510. Epub 2017 Sep 5.
8
Phenotypic diversity and glucocorticoid sensitivity in patients with familial partial lipodystrophy type 2.
Clin Endocrinol (Oxf). 2019 Jul;91(1):94-103. doi: 10.1111/cen.13984. Epub 2019 Apr 15.

引用本文的文献

1
Rare Variation in LMNA Underlies Polycystic Ovary Syndrome Pathogenesis in 2 Independent Cohorts.
J Clin Endocrinol Metab. 2025 Jun 17;110(7):e2217-e2232. doi: 10.1210/clinem/dgae761.
2
Effect of β-Estradiol on Adipogenesis in a 3T3-L1 Cell Model of Prelamin A Accumulation.
Int J Mol Sci. 2024 Jan 20;25(2):1282. doi: 10.3390/ijms25021282.
3
Hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, steatohepatitis, and fibrosis in male mice.
Am J Physiol Gastrointest Liver Physiol. 2023 Aug 1;325(2):G184-G195. doi: 10.1152/ajpgi.00214.2022. Epub 2023 Jun 27.
5
Deletion of LDLRAP1 Induces Atherosclerotic Plaque Formation, Insulin Resistance, and Dysregulated Insulin Response in Adipose Tissue.
Am J Pathol. 2022 Jul;192(7):1092-1108. doi: 10.1016/j.ajpath.2022.03.014. Epub 2022 Apr 20.
6
Not Enough Fat: Mouse Models of Inherited Lipodystrophy.
Front Endocrinol (Lausanne). 2022 Feb 18;13:785819. doi: 10.3389/fendo.2022.785819. eCollection 2022.
7
Genomic loci mispositioning in Tmem120a knockout mice yields latent lipodystrophy.
Nat Commun. 2022 Jan 13;13(1):321. doi: 10.1038/s41467-021-27869-2.
8
Preclinical Advances of Therapies for Laminopathies.
J Clin Med. 2021 Oct 21;10(21):4834. doi: 10.3390/jcm10214834.
9
Adipocyte-Specific Deletion of Lamin A/C Largely Models Human Familial Partial Lipodystrophy Type 2.
Diabetes. 2021 Sep;70(9):1970-1984. doi: 10.2337/db20-1001. Epub 2021 Jun 4.
10
Deficiency in ZMPSTE24 and resulting farnesyl-prelamin A accumulation only modestly affect mouse adipose tissue stores.
J Lipid Res. 2020 Mar;61(3):413-421. doi: 10.1194/jlr.RA119000593. Epub 2020 Jan 15.

本文引用的文献

1
Unexpected evidence for active brown adipose tissue in adult humans.
Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52. doi: 10.1152/ajpendo.00691.2006. Epub 2007 May 1.
2
Ontogenic loss of brown adipose tissue sensitivity to beta-adrenergic stimulation in the ovine.
Endocrinology. 2007 Jan;148(1):461-8. doi: 10.1210/en.2006-0918. Epub 2006 Oct 5.
3
The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation.
J Clin Invest. 2006 Aug;116(8):2183-2192. doi: 10.1172/JCI24767.
4
5
Nuclear lamins, diseases and aging.
Curr Opin Cell Biol. 2006 Jun;18(3):335-41. doi: 10.1016/j.ceb.2006.03.007. Epub 2006 Apr 24.
6
Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy.
Hum Mol Genet. 2006 Feb 15;15(4):653-63. doi: 10.1093/hmg/ddi480. Epub 2006 Jan 13.
7
Genetic basis of lipodystrophies and management of metabolic complications.
Annu Rev Med. 2006;57:297-311. doi: 10.1146/annurev.med.57.022605.114424.
8
Laminopathies: multisystem dystrophy syndromes.
Mol Genet Metab. 2006 Apr;87(4):289-302. doi: 10.1016/j.ymgme.2005.10.018. Epub 2005 Dec 20.
9
Hepatic steatosis in Dunnigan-type familial partial lipodystrophy.
Am J Gastroenterol. 2005 Oct;100(10):2218-24. doi: 10.1111/j.1572-0241.2005.00234.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验