Suppr超能文献

脊椎动物发育过程中微小RNA及其靶标的连贯但重叠的表达。

Coherent but overlapping expression of microRNAs and their targets during vertebrate development.

作者信息

Shkumatava Alena, Stark Alexander, Sive Hazel, Bartel David P

机构信息

Whitehead Institute of Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 01142, USA.

出版信息

Genes Dev. 2009 Feb 15;23(4):466-81. doi: 10.1101/gad.1745709.

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that direct post-transcriptional repression of protein-coding genes. In vertebrates, each highly conserved miRNA typically regulates hundreds of target mRNAs. However, the precise relationship between expression of the miRNAs and that of their targets has remained unclear, in part because of the scarcity of quantitative expression data at cellular resolution. Here we report quantitative analyses of mRNA levels in miRNA-expressing cells of the zebrafish embryo, capturing entire miRNA expression domains, purified to cellular resolution using fluorescent-activated cell sorting (FACS). Focus was on regulation by miR-206 and miR-133 in the developing somites and miR-124 in the developing central nervous system. Comparison of wild-type embryos and those lacking miRNAs revealed predicted targets that responded to the miRNAs and distinguished miRNA-mediated mRNA destabilization from other regulatory effects. For all three miRNAs examined, expression of the miRNAs and that of their predicted targets usually overlapped. A few targets were expressed at higher levels in miRNA-expressing cells than in the rest of the embryo, demonstrating that miRNA-mediated repression can act in opposition to other regulatory processes. However, for most targets expression was lower in miRNA-expressing cells than in the rest of the embryo, indicating that miRNAs usually operate in concert with the other regulatory machinery of the cell.

摘要

微小RNA(miRNA)是一类小的非编码RNA,可指导蛋白质编码基因的转录后抑制。在脊椎动物中,每个高度保守的miRNA通常调控数百个靶标mRNA。然而,miRNA与其靶标的表达之间的确切关系仍不清楚,部分原因是缺乏细胞分辨率下的定量表达数据。在此,我们报告了对斑马鱼胚胎中表达miRNA的细胞中mRNA水平的定量分析,捕获了整个miRNA表达域,并使用荧光激活细胞分选(FACS)将其纯化至细胞分辨率。重点研究了发育中的体节中miR-206和miR-133以及发育中的中枢神经系统中miR-124的调控作用。野生型胚胎与缺乏miRNA的胚胎的比较揭示了对miRNA有反应的预测靶标,并区分了miRNA介导的mRNA去稳定化与其他调控作用。对于所检测的所有三种miRNA,miRNA及其预测靶标的表达通常重叠。一些靶标在表达miRNA的细胞中的表达水平高于胚胎的其他部分,表明miRNA介导的抑制作用可能与其他调控过程相反。然而,对于大多数靶标,在表达miRNA的细胞中的表达低于胚胎的其他部分,这表明miRNA通常与细胞的其他调控机制协同作用。

相似文献

3
Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization.
Genes Dev. 2009 Mar 1;23(5):619-32. doi: 10.1101/gad.1760209. Epub 2009 Feb 24.
4
MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development.
Int J Biochem Cell Biol. 2014 Apr;49:53-63. doi: 10.1016/j.biocel.2014.01.005. Epub 2014 Jan 18.
5
MicroRNA function and mechanism: insights from zebra fish.
Cold Spring Harb Symp Quant Biol. 2006;71:195-203. doi: 10.1101/sqb.2006.71.055.
6
Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate.
Nat Genet. 2007 Feb;39(2):259-63. doi: 10.1038/ng1953. Epub 2007 Jan 14.
7
miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio.
Nucleic Acids Res. 2013 Apr;41(8):4470-80. doi: 10.1093/nar/gkt139. Epub 2013 Mar 6.
9
Target identification of microRNAs expressed highly in human embryonic stem cells.
J Cell Biochem. 2009 Apr 15;106(6):1020-30. doi: 10.1002/jcb.22084.
10
The crucial role and regulations of miRNAs in zebrafish development.
Protoplasma. 2017 Jan;254(1):17-31. doi: 10.1007/s00709-015-0931-1. Epub 2016 Jan 28.

引用本文的文献

5
An ancient pan-cnidarian microRNA regulates stinging capsule biogenesis in Nematostella vectensis.
Cell Rep. 2023 Sep 26;42(9):113072. doi: 10.1016/j.celrep.2023.113072. Epub 2023 Sep 6.
6
A hidden threshold in motor neuron gene networks revealed by modulation of miR-218 dose.
Neuron. 2021 Oct 20;109(20):3252-3267.e6. doi: 10.1016/j.neuron.2021.07.028. Epub 2021 Aug 26.
7
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection.
Int J Mol Sci. 2020 Aug 20;21(17):5993. doi: 10.3390/ijms21175993.
8
MicroRNAs in Ocular Infection.
Microorganisms. 2019 Sep 17;7(9):359. doi: 10.3390/microorganisms7090359.
9
Integrated microRNA and mRNA analysis in the pathogenic filamentous fungus Trichophyton rubrum.
BMC Genomics. 2018 Dec 14;19(1):933. doi: 10.1186/s12864-018-5316-3.

本文引用的文献

1
Widespread changes in protein synthesis induced by microRNAs.
Nature. 2008 Sep 4;455(7209):58-63. doi: 10.1038/nature07228. Epub 2008 Jul 30.
2
The impact of microRNAs on protein output.
Nature. 2008 Sep 4;455(7209):64-71. doi: 10.1038/nature07242. Epub 2008 Jul 30.
4
Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution.
Nature. 2008 Jun 26;453(7199):1239-43. doi: 10.1038/nature07002. Epub 2008 May 18.
5
The transcriptional landscape of the yeast genome defined by RNA sequencing.
Science. 2008 Jun 6;320(5881):1344-9. doi: 10.1126/science.1158441. Epub 2008 May 1.
8
What is principal component analysis?
Nat Biotechnol. 2008 Mar;26(3):303-4. doi: 10.1038/nbt0308-303.
9
Regulation of progenitor cell proliferation and granulocyte function by microRNA-223.
Nature. 2008 Feb 28;451(7182):1125-9. doi: 10.1038/nature06607. Epub 2008 Feb 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验