Suppr超能文献

大肠杆菌β-葡萄糖苷转运蛋白的空间排列

Spatial arrangement of the beta-glucoside transporter from Escherichia coli.

作者信息

Yagur-Kroll Sharon, Ido Ayelet, Amster-Choder Orna

机构信息

Department of Molecular Biology The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel.

出版信息

J Bacteriol. 2009 May;191(9):3086-94. doi: 10.1128/JB.01037-08. Epub 2009 Feb 27.

Abstract

The Escherichia coli BglF protein, a sugar permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), catalyzes concomitant transport and phosphorylation of beta-glucosides across the cytoplasmic membrane. Despite intensive studies of PTS permeases, the mechanism that couples sugar translocation to phosphorylation and the nature of the translocation apparatus are poorly understood. Like many PTS permeases, BglF consists of a transmembrane domain, which in addition to transmembrane helices (TMs) contains a big cytoplasmic loop and two hydrophilic domains, one containing a conserved cysteine that phosphorylates the incoming sugar. We previously reported that the big hydrophilic loop, which connects TM VI to TM VII, contains regions that alternate between facing-in and facing-out states and speculated that it is involved in creating the sugar translocation channel. In the current study we used [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET), a membrane-impermeative thiol-specific reagent, to identify sites that are involved in sugar transport. These sites map to the regions that border the big loop. Using cross-linking reagents that penetrate the cell, we could demonstrate spatial proximity between positions at the center of the big loop and the phosphorylation site, suggesting that the two regions come together to execute sugar phosphotransfer. Additionally, positions on opposite ends of the big loop were found to be spatially close. Cys accessibility analyses suggested that the sugar induces a change in this region. Taken together, our results demonstrate that the big loop participates in creating the sugar pathway and explain the observed coupling between translocation of PTS sugars from the periplasm to the cytoplasm and their phosphorylation.

摘要

大肠杆菌BglF蛋白是磷酸烯醇丙酮酸依赖性磷酸转移酶系统(PTS)的一种糖通透酶,催化β-葡萄糖苷跨细胞质膜的伴随转运和磷酸化。尽管对PTS通透酶进行了深入研究,但糖转运与磷酸化偶联的机制以及转运装置的性质仍知之甚少。与许多PTS通透酶一样,BglF由一个跨膜结构域组成,该结构域除跨膜螺旋(TMs)外,还包含一个大的细胞质环和两个亲水区,其中一个含有使进入的糖磷酸化的保守半胱氨酸。我们之前报道过,连接TM VI和TM VII的大亲水环包含在面向内和面向外状态之间交替的区域,并推测它参与形成糖转运通道。在本研究中,我们使用了[2-(三甲基铵)乙基]甲硫基磺酸盐溴化物(MTSET),一种膜不透性的硫醇特异性试剂,来鉴定参与糖转运的位点。这些位点映射到与大环相邻的区域。使用可穿透细胞的交联试剂,我们可以证明大环中心位置与磷酸化位点之间的空间接近性,表明这两个区域聚集在一起执行糖磷酸转移。此外,发现大环相对两端的位置在空间上接近。半胱氨酸可及性分析表明,糖会诱导该区域发生变化。综上所述,我们的结果表明大环参与形成糖通道,并解释了观察到的PTS糖从周质转运到细胞质及其磷酸化之间的偶联现象。

相似文献

1
Spatial arrangement of the beta-glucoside transporter from Escherichia coli.
J Bacteriol. 2009 May;191(9):3086-94. doi: 10.1128/JB.01037-08. Epub 2009 Feb 27.
2
Dynamic membrane topology of the Escherichia coli beta-glucoside transporter BglF.
J Biol Chem. 2005 May 13;280(19):19306-18. doi: 10.1074/jbc.M410896200. Epub 2005 Mar 8.
5
Genetic dissection of the divergent activities of the multifunctional membrane sensor BglF.
J Bacteriol. 2007 Dec;189(23):8601-15. doi: 10.1128/JB.01220-07. Epub 2007 Sep 28.
7
Spatial and temporal organization of the E. coli PTS components.
EMBO J. 2010 Nov 3;29(21):3630-45. doi: 10.1038/emboj.2010.240. Epub 2010 Oct 5.

引用本文的文献

1
Nucleoid and cytoplasmic localization of small RNAs in Escherichia coli.
Nucleic Acids Res. 2017 Mar 17;45(5):2919-2934. doi: 10.1093/nar/gkx023.
4
Structural insight into the PTS sugar transporter EIIC.
Biochim Biophys Acta. 2015 Mar;1850(3):577-85. doi: 10.1016/j.bbagen.2014.03.013. Epub 2014 Mar 20.

本文引用的文献

1
Structure and mechanism of ABC transporter proteins.
Curr Opin Struct Biol. 2007 Aug;17(4):412-8. doi: 10.1016/j.sbi.2007.07.003. Epub 2007 Aug 27.
2
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031. doi: 10.1128/MMBR.00024-06.
4
Mutant library construction in directed molecular evolution: casting a wider net.
Mol Biotechnol. 2006 Sep;34(1):55-68. doi: 10.1385/MB:34:1:55.
5
Lessons from lactose permease.
Annu Rev Biophys Biomol Struct. 2006;35:67-91. doi: 10.1146/annurev.biophys.35.040405.102005.
6
Dynamic membrane topology of the Escherichia coli beta-glucoside transporter BglF.
J Biol Chem. 2005 May 13;280(19):19306-18. doi: 10.1074/jbc.M410896200. Epub 2005 Mar 8.
8
Intermolecular thiol cross-linking via loops in the lactose permease of Escherichia coli.
Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10187-92. doi: 10.1073/pnas.1434239100. Epub 2003 Aug 21.
10
The glucose-specific carrier of the Escherichia coli phosphotransferase system.
Eur J Biochem. 2002 Oct;269(20):4969-80. doi: 10.1046/j.1432-1033.2002.03197.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验