Suppr超能文献

基于RNA的T盒调控机制的生化特性及功能意义

Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.

作者信息

Gutiérrez-Preciado Ana, Henkin Tina M, Grundy Frank J, Yanofsky Charles, Merino Enrique

机构信息

Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.

出版信息

Microbiol Mol Biol Rev. 2009 Mar;73(1):36-61. doi: 10.1128/MMBR.00026-08.

Abstract

The T-box mechanism is a common regulatory strategy used for modulating the expression of genes of amino acid metabolism-related operons in gram-positive bacteria, especially members of the Firmicutes. T-box regulation is usually based on a transcription attenuation mechanism in which an interaction between a specific uncharged tRNA and the 5' region of the transcript stabilizes an antiterminator structure in preference to a terminator structure, thereby preventing transcription termination. Although single T-box regulatory elements are common, double or triple T-box arrangements are also observed, expanding the regulatory range of these elements. In the present study, we predict the functional implications of T-box regulation in genes encoding aminoacyl-tRNA synthetases, proteins of amino acid biosynthetic pathways, transporters, and regulatory proteins. We also consider the global impact of the use of this regulatory mechanism on cell physiology. Novel biochemical relationships between regulated genes and their corresponding metabolic pathways were revealed. Some of the genes identified, such as the quorum-sensing gene luxS, in members of the Lactobacillaceae were not previously predicted to be regulated by the T-box mechanism. Our analyses also predict an imbalance in tRNA sensing during the regulation of operons containing multiple aminoacyl-tRNA synthetase genes or biosynthetic genes involved in pathways common to more than one amino acid. Based on the distribution of T-box regulatory elements, we propose that this regulatory mechanism originated in a common ancestor of members of the Firmicutes, Chloroflexi, Deinococcus-Thermus group, and Actinobacteria and was transferred into the Deltaproteobacteria by horizontal gene transfer.

摘要

T-box机制是革兰氏阳性菌,尤其是厚壁菌门成员中用于调节氨基酸代谢相关操纵子基因表达的一种常见调控策略。T-box调控通常基于转录衰减机制,即特定的无电荷tRNA与转录本5'区域之间的相互作用优先稳定抗终止子结构而非终止子结构,从而防止转录终止。尽管单个T-box调控元件很常见,但也观察到双或三个T-box排列,扩大了这些元件的调控范围。在本研究中,我们预测了T-box调控对编码氨酰-tRNA合成酶、氨基酸生物合成途径蛋白、转运蛋白和调控蛋白的基因的功能影响。我们还考虑了这种调控机制的使用对细胞生理学的全局影响。揭示了受调控基因与其相应代谢途径之间新的生化关系。一些已鉴定的基因,如乳杆菌科成员中的群体感应基因luxS,以前并未预测受T-box机制调控。我们的分析还预测,在调控含有多个氨酰-tRNA合成酶基因或参与不止一种氨基酸共同途径的生物合成基因的操纵子时,tRNA感应会出现失衡。基于T-box调控元件的分布,我们提出这种调控机制起源于厚壁菌门、绿弯菌门、嗜热放线菌群和放线菌门成员的共同祖先,并通过水平基因转移转移到了δ-变形菌门中。

相似文献

1
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Microbiol Mol Biol Rev. 2009 Mar;73(1):36-61. doi: 10.1128/MMBR.00026-08.
2
Comparative genomic analysis of T-box regulatory systems in bacteria.
RNA. 2008 Apr;14(4):717-35. doi: 10.1261/rna.819308.
4
The T box mechanism: tRNA as a regulatory molecule.
FEBS Lett. 2010 Jan 21;584(2):318-24. doi: 10.1016/j.febslet.2009.11.056.
5
New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria.
Trends Genet. 2005 Aug;21(8):432-6. doi: 10.1016/j.tig.2005.06.001.
7
tRNA-directed transcription antitermination.
Mol Microbiol. 1994 Aug;13(3):381-7. doi: 10.1111/j.1365-2958.1994.tb00432.x.
8
Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor Rex.
J Bacteriol. 2012 Mar;194(5):1145-57. doi: 10.1128/JB.06412-11. Epub 2011 Dec 30.
9
Hierarchical mechanism of amino acid sensing by the T-box riboswitch.
Nat Commun. 2018 May 14;9(1):1896. doi: 10.1038/s41467-018-04305-6.
10
An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism.
IUBMB Life. 2019 Aug;71(8):1167-1180. doi: 10.1002/iub.2098. Epub 2019 Jun 17.

引用本文的文献

1
Targeting Gene Transcription Prevents Antibiotic Resistance.
Antibiotics (Basel). 2025 Mar 27;14(4):345. doi: 10.3390/antibiotics14040345.
3
Translational T-box riboswitches bind tRNA by modulating conformational flexibility.
Nat Commun. 2024 Aug 3;15(1):6592. doi: 10.1038/s41467-024-50885-x.
4
5
Structural idiosyncrasies of glycyl T-box riboswitches among pathogenic bacteria.
RNA. 2024 Sep 16;30(10):1328-1344. doi: 10.1261/rna.080071.124.
6
New Insights into the Biological Functions of Essential TsaB/YeaZ Protein in .
Antibiotics (Basel). 2024 Apr 25;13(5):393. doi: 10.3390/antibiotics13050393.
7
Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble.
Nat Commun. 2023 Sep 6;14(1):5438. doi: 10.1038/s41467-023-41155-3.
8
Oxazolidinones as versatile scaffolds in medicinal chemistry.
RSC Med Chem. 2023 Feb 8;14(5):823-847. doi: 10.1039/d2md00415a. eCollection 2023 May 25.
9
Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology.
J Bacteriol. 2023 May 25;205(5):e0010223. doi: 10.1128/jb.00102-23. Epub 2023 May 4.
10
Identification of Putative Drug Targets in Highly Resistant Gram-Negative Bacteria; and Drug Discovery Against Glycyl-tRNA Synthetase as a New Target.
Bioinform Biol Insights. 2023 Feb 12;17:11779322231152980. doi: 10.1177/11779322231152980. eCollection 2023.

本文引用的文献

1
Riboswitch RNAs: using RNA to sense cellular metabolism.
Genes Dev. 2008 Dec 15;22(24):3383-90. doi: 10.1101/gad.1747308.
3
GeConT 2: gene context analysis for orthologous proteins, conserved domains and metabolic pathways.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W176-80. doi: 10.1093/nar/gkn330. Epub 2008 May 29.
4
Evolution of bacterial trp operons and their regulation.
Curr Opin Microbiol. 2008 Apr;11(2):78-86. doi: 10.1016/j.mib.2008.02.005.
5
Comparative genomic analysis of T-box regulatory systems in bacteria.
RNA. 2008 Apr;14(4):717-35. doi: 10.1261/rna.819308.
6
Whence the genetic code? Thawing the 'frozen accident'.
Heredity (Edinb). 2008 Apr;100(4):339-40. doi: 10.1038/hdy.2008.7. Epub 2008 Feb 13.
7
The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2128-33. doi: 10.1073/pnas.0711093105. Epub 2008 Jan 24.
9
Transcriptional regulation of the methionine and cysteine transport and metabolism in streptococci.
FEMS Microbiol Lett. 2007 Nov;276(2):207-15. doi: 10.1111/j.1574-6968.2007.00934.x.
10
The DNA-binding domain as a functional indicator: the case of the AraC/XylS family of transcription factors.
Genetica. 2008 May;133(1):65-76. doi: 10.1007/s10709-007-9185-y. Epub 2007 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验